Fe(III) porphyrin metal–organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2

  • Morvarid Aghayan
  • Ali MahmoudiEmail author
  • Khodadad Nazari
  • Saeed Dehghanpour
  • Samaneh Sohrabi
  • Mohammad Reza Sazegar
  • Navid Mohammadian-Tabrizi


Metal–organic frameworks with diverse structures and unique properties have demonstrated that can be an ideal substitute for natural enzymes in colorimetric sensing platform for analyte detection in various fields such as environmental chemistry, biotechnology and clinical diagnostics, which have attracted the scientist’s attention, recently. In this study, a porous coordination network (denoted as PCN-222) was synthesized as a new biomimetic material from an iron linked tetrakis (4-carboxyphenyl) porphyrin (named as Fe-TCPP) as a heme-like ligand and Zr6 linker as a node. This catalyst shows the peroxidase and catalase activities clearly. The mechanism of peroxidase activity for PCN-222 was investigated using the spectrophotometric methods and its activity was compared with the other nanoparticles which, the results showed a higher activity than the other catalysts. Also, the hydrogen peroxide was detected by PCN-222(Fe) based on the peroxidase-like activity. For detection of hydrogen peroxide a linear range of 3–200 µM and detection of limit (LOD) 1 µM (3σ/slope), under optimal conditions were obtained. Moreover, based on the high tendency of PCN-222(Fe) to combine with the TMB as a chromogenic substrate in the peroxidase-like activity, we developed the sensitive and selective colorimetric assay for glucose detection that was found a detection limit (LOD) of 2.2 µM in the linear range from 12 to 75 µM. Finally due to the good catalytic activity of PCN-222(Fe), it was used to detection of glucose and hydrogen peroxide in real samples.

Graphical abstract


Metal–organic frameworks PCN-222(Fe) Nanozyme Enzyme mimetic H2O2 detection Glucose detection 



  1. 1.
    W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Kim, A.S. Cambell, J. Wang, Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018)CrossRefGoogle Scholar
  3. 3.
    L. Guo, L. Mao, K. Huang, H. Liu, Pt–Se nanostructures with oxidase-like activity and their application in a selective colorimetric assay for mercury (II). J. Mater. Sci. 52, 10738–10750 (2017)CrossRefGoogle Scholar
  4. 4.
    G. Maduraiveeran, M. Sasidharan, V. Gansan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018)CrossRefGoogle Scholar
  5. 5.
    F. Bibi, C. Guillaume, N. Gontard, B. Sorli, A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends Food Sci. Technol. 62, 91–103 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Qiao, L. Chen, X. Li, L. Li, S. Ai, Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens. Actuator B-Chem. 193, 255–262 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Chen, J. Chen, Y.B. Feng, L. Hong, Q.Y. Chen, L.F. Wu, X.H. Lin, X.H. Xia (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137, 1706–1712.CrossRefGoogle Scholar
  8. 8.
    Y. Gao, Y. Wu, J. Di, Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim. Acta Part A. 173, 207–212 (2017)CrossRefGoogle Scholar
  9. 9.
    C.L. Hsu, J.H. Lin, D.X. Hsu, S.H. Wang, S.Y. Lin, T.J. Hsueh (2017) Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes. Sens. Actuators B-Chem. 238, 150–159CrossRefGoogle Scholar
  10. 10.
    Y. Ding, M. Chen, K. Wu, M. Chen, L. Sun, Z. Liu, Z. Shi, Q. Liu, High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles. Mater. Sci. Eng. C. 80, 558–565 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Zhao, Q. Ou, X. Yin, J. Liu. Nanomaterial-based electrochemical hydrogen peroxide biosensor. Int. J. Biosens. Bioelectron. 2, 25–28 (2017)Google Scholar
  12. 12.
    Q. Liu, Y. Yang, X. Lv, Y. Ding, Y. Zhang, J. Jing, C. Xu, One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sens. Actuator B-Chem 240, 726–734 (2017)CrossRefGoogle Scholar
  13. 13.
    L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 102, 29–45 (1962)CrossRefGoogle Scholar
  14. 14.
    V. Cerda, A. Gonzalez, K. Danchana, From thermometric to spectrophotometric kinetic-catalytic methods of analysis: a review. Talanta 167, 733–746 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Li, D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, C. Yu, Fully-drawn origami paper analytical device for electrochemical detection of glucose. Sens. Actuators B-Chem. 231, 230–238 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Shen, J. Su, X. Li, J. Luo, M. Yang, Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens. Actuators B-Chem. 209, 695–700 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Wang, Q. Hao, Y. Zhang, Y. Xu, W. Lei, Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim. Acta 183, 273–279 (2016).CrossRefGoogle Scholar
  19. 19.
    Z. Yang, Z. Zhang, Y. Jiang, M. Chi, G. Nie, X. Lu, C. Wang, Palladium nanoparticles modified electrospun CoFe2O4 nanotubes with enhanced peroxidase-like activity for colorimetric detection of hydrogen peroxide. RSC Adv. 6, 33636–33642 (2016)CrossRefGoogle Scholar
  20. 20.
    R.J. Russell, M.V. Pishko, C.C. Gefrides, M.J. McShane, G.L. Cote, A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly (ethylene glycol) hydrogel. Anal. Chem. 71, 3126–3132 (1999).CrossRefGoogle Scholar
  21. 21.
    P.H. Hynninen, V. Kaartinen, E. Kolehmainen, Horseradish peroxidase-catalyzed oxidation of chlorophyll a with hydrogen peroxide: characterization of the products and mechanism of the reaction. Biochim. Biophys. Acta 1797, 531–542 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Dong, L. Mao, S. Luo, L. Zhou, Y. Feng, S. Gao. Comparison of lignin peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from water. Environ. Sci. Pollut. Res. Int. 21, 2358–2366 (2014)CrossRefGoogle Scholar
  23. 23.
    S.B. Maddinedi, B.K. Mandal, Peroxidase like activity of quinic acid stabilized copper oxide nanosheets. Austin J. Anal. Pharm. Chem. 1, 1–4 (2014)Google Scholar
  24. 24.
    L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48, 2540–2542 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Andre, F. Natalio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.C. Schroeder, W.E.G. Mueller, W. Tremel, V2O5 Nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21, 501–509 (2011)CrossRefGoogle Scholar
  28. 28.
    S.K. Maji, A.K. Dutta, P. Biswas, D.N. Srivastava, P. Paul, A. Mondal, B. Adhikary, Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic. Appl. Catal. A-Gen. 419, 170–177 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22, 2206–2210 (2010)CrossRefGoogle Scholar
  30. 30.
    W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, Y. Huang, Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 47, 6695–6697 (2011)CrossRefGoogle Scholar
  31. 31.
    J.W. Zhang, H.T. Zhang, Z.Y. Du, X. Wang, S.H. Yu, H.L. Jiang, Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 50, 1092–1094 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018–1023 (2012)CrossRefGoogle Scholar
  34. 34.
    M.D. Allendorf, V. Stavila, Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrysEngCommun 17, 229–246 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem. Commun. 51, 2056–2059 (2015)CrossRefGoogle Scholar
  36. 36.
    W. Morris, B. Volosskiy, S. Demir, F. Gandara, P.L. McGrier., H. Furukawa, D. Cascio, J.F. Stoddart, O.M. Yaghi, Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51, 6443–6445 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Chen, T. Hoang, S. Ma, Biomimetic catalysis of a porous iron-based metal–metalloporphyrin framework. Inorg. Chem. 51, 12600–12602 (2012)CrossRefGoogle Scholar
  38. 38.
    X.S. Wang, M. Chrzanowski, D. Yuan, B.S. Sweeting, S. Ma, Covalent heme framework as a highly active heterogeneous biomimetic oxidation catalyst. Chem. Mater, 26, 1639–1644 (2014).CrossRefGoogle Scholar
  39. 39.
    L. Ai, L. Li, C. Zhang, J. Fu, J. Jiang, MIL-53 (Fe): a metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem.–Eur. J 19, 15105–15108 (2013)CrossRefGoogle Scholar
  40. 40.
    H. Yu, D. Long, Highly chemiluminescent metal-organic framework of type MIL-101 (Cr) for detection of hydrogen peroxide and pyrophosphate ions. Microchim. Acta., 183, 3151–3157 (2016).CrossRefGoogle Scholar
  41. 41.
    K. Wang, D. Feng, T.F. Liu, J. Su, S. Yuan, Y.P. Chen, M. Bosch, X. Zou, H.C. Zhou, A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 136, 13983–13986 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013)CrossRefGoogle Scholar
  43. 43.
    D. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z. Wei, H.C. Zhou, Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012)CrossRefGoogle Scholar
  44. 44.
    P.G. Rodríguez, C.F. Batista, R. Vazquez-Duhalt, B. Valderrama. A novel heme peroxidase from Raphanus sativus intrinsically resistant to hydrogen peroxide. Eng. Life Sci. 8, 286–296 (2008)CrossRefGoogle Scholar
  45. 45.
    A.J. Howarth, Y. Liu, J.T. Hupp, O.K. Farha, Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. Crys Eng Comm. 17, 7245–7253 (2015)CrossRefGoogle Scholar
  46. 46.
    Z.Y. Gu, J. Park, A. Raiff, Z. Wei, H.C. Zhou, Metal–organic frameworks as biomimetic catalysts. Chem Cat Chem. 6, 67–75 (2014)Google Scholar
  47. 47.
    D.G. Blackmond, Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem., Int. Ed. 44, 4302–4320 (2005)CrossRefGoogle Scholar
  48. 48.
    B.H.J. Hostee, Non-Inverted Versus Inverted Plots in Enzyme Kinetics. Nature 184, 1296–1298 (1959)CrossRefGoogle Scholar
  49. 49.
    S. Kumari, B. Dhar, C. Panda, A. Meena, S. Gupta, Fe-TAML encapsulated inside mesoporous silica nanoparticles as peroxidase mimic: femtomolar protein detection. ACS Appl. Mater. Interfaces 6, 13866–13873 (2014)CrossRefGoogle Scholar
  50. 50.
    E. Austin, M. Gouterman, Porphyrins XXXVII. Absorption and emission of weak complexes with acids, bases, and salts. Bioinorg. Chem. 9, 281–298 (1978)CrossRefGoogle Scholar
  51. 51.
    S. Gawande, S.R. Thakare, Ternary polymer composite of graphene, carbon nitride, and poly (3-hexylthiophene): an efficient photocatalyst. Chem Cat Chem 4, 1759–1763 (2012)Google Scholar
  52. 52.
    E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20, 1907–1912 (2010)CrossRefGoogle Scholar
  53. 53.
    X.L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.R. Li, H.C. Zhou, A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation. J. Am. Chem. Soc. 139, 211–217 (2017)CrossRefGoogle Scholar
  54. 54.
    S. Sohrabi, S. Dehghanpour, M. Ghalekhani, A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J. Mater. Sci. 53, 3624–3639 (2018)CrossRefGoogle Scholar
  55. 55.
    Y. Yu, P. Ju, D. Zhang, X. Han, X. Yin, L. Zheng, C. Sun, Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sens. Actuator B-Chem 233, 162–172 (2016)CrossRefGoogle Scholar
  56. 56.
    K. Nazari, S. Shokrollahzadeh, A. Mahmoudi, F. Mesbahi, N. Seyed Matin, A.A. Moosavi-Movahedi, Iron (III) protoporphyrin/MCM41 catalyst as a peroxidase enzyme model: preparation and typical test reactions. J. Mol. Catal. A Chem. 239, 1–9 (2005)CrossRefGoogle Scholar
  57. 57.
    N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004)CrossRefGoogle Scholar
  58. 58.
    K. Nazari, A. Mahmoudi, R. Khodafarin, A.A. Moosavi Movahedi, A. Mohebi, Stabilizing and suicide-peroxide protecting effect of Ni2+ on horseradish peroxidase. J. Iran. Chem. Soc. 2, 232–237 (2005)CrossRefGoogle Scholar
  59. 59.
    A. Claiborne, I. Fridovich, Chemical and enzymic intermediates in the peroxidation of o-dianisidine by horseradish peroxidase. 1. Spectral properties of the products of dianisidine oxidation. Biochemistry 18, 2324–2329 (1979)CrossRefGoogle Scholar
  60. 60.
    A. Mahmoudi, K. Nazari, A.A. Moosavi-Movahedi, A.A. Saboury, Enthalpy analysis of horseradish peroxidase in the presence of Ni2+: a stabilization study. Thermochim. Acta 385, 33–39 (2002)CrossRefGoogle Scholar
  61. 61.
    Y. Liu, M. Yuan, L. Guo, R. Qiao, An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens. Bioelectron. 52, 391–396 (2014)CrossRefGoogle Scholar
  62. 62.
    A. Mahmoudi, K. Nazari, N. Mohammadian, A.A. Moosavi-Movahedi, Effect of Mn2+, Co2+, Ni2+, and Cu2+ on horseradish peroxidase. Appl. Biochem. Biotechnol. 104, 81–94 (2003)CrossRefGoogle Scholar
  63. 63.
    J. Shu, Z.L. Qiu, Q.H. Wei, J.Y. Zhuang, D.P. Tang, Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: a novel peroxidase mimetic system for improved electrochemical immunoassay. Sci. Rep 5, 15113 (2015)CrossRefGoogle Scholar
  64. 64.
    M. Khosraneh, A. Mahmoudi, H. Rahimi, K. Nazari, A.A. Moosavi-Movahedi, Suicide-Peroxide inactivation of microperoxidase-11: a kinetic study. J. Enzyme Inhibit. Med. Chem. 22, 677–684 (2007)CrossRefGoogle Scholar
  65. 65.
    X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Research 4, 908–920 (2011)CrossRefGoogle Scholar
  66. 66.
    Y. Sun, H.C. Zhou, Recent progress in the synthesis of metal–organic frameworks. Sci. Technol. Adv. Mater. 16, 054202 (2015)CrossRefGoogle Scholar
  67. 67.
    D. Metelista, O. Rus, A. Puchkaev, Russ, Heme-containing hydroperoxide test systems for inhibitors of free-radical reactions. J. Appl. Chem. 70, 1629–1636 (1997)Google Scholar
  68. 68.
    M. Kim, J. Shim, T. Li, J. Lee, H. Park, Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem. Eur. J. 17, 10700–10707 (2011)CrossRefGoogle Scholar
  69. 69.
    Q. Liu, P. Chen, Z. Xu, M. Chen, Y. Ding, K. Yue, J. Xu, A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens. Actuator B-Chem. 251, 339–348 (2017)CrossRefGoogle Scholar
  70. 70.
    H.Q. Zheng, C.Y. Liu, X.Y. Zeng, J. Chen, J. Lu, R.G. Lin, R. Cao, Z.J. Lin, J.W. Su, MOF-808: a metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 57, 9096–9104 (2018)CrossRefGoogle Scholar
  71. 71.
    H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen, F. Ye, A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim. Acta 184, 4629–4635 (2017)CrossRefGoogle Scholar
  72. 72.
    T. Zhan, J. Kang, X. Li, L. Pan, G. Li, W. Hou, NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2. Sens. Actuator B-Chem 255, 2635–2642 (2017)CrossRefGoogle Scholar
  73. 73.
    M. Chen, B. Yang, J. Zhu, H. Liu, X. Zhang, X. Zheng, FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater. Sci. Eng. C. 90, 610–620 (2018)CrossRefGoogle Scholar
  74. 74.
    R. Guo, Y. Wang, S. Yu, W. Zhu, F. Zheng, W. Liu, D. Zhang, J. Wang, Dual role of hydrogen peroxide on the oxidase-like activity of nanoceria and its application for colorimetric hydrogen peroxide and glucose sensing. RSC. Adv. 6, 577–583 (2016)Google Scholar
  75. 75.
    L. Chen, B. Sun, X. Wang, F. Qiao, S. Ai, 2D ultrathin nanosheets of Co–Al layered double hydroxides prepared in l-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B. 1, 2268–2274 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science, North Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Research Institute of Petroleum IndustryN.I.O.CTehranIran
  3. 3.Department of Chemistry, Faculty of ScienceAlzahra UniversityTehranIran
  4. 4.Department of Chemistry, Faculty of ScienceUniversity of TehranTehranIran

Personalised recommendations