Journal of Porous Materials

, Volume 26, Issue 5, pp 1465–1474 | Cite as

Effective adsorptive performance of Fe3O4@SiO2 core shell spheres for methylene blue: kinetics, isotherm and mechanism

  • Fazle SubhanEmail author
  • Sobia Aslam
  • Zifeng YanEmail author
  • Mawaz Khan
  • U. J. Etim
  • Muhammad Naeem


In this study, Fe3O4 nanoparticles (NPs) as a core surrounded with thick and tunable SiO2 shells were successfully synthesized and characterized by means of N2-isotherm, scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared (FT-IR) and UV–Vis diffuse reflection spectroscopy (UV–Vis DRS) techniques. The characterization results revealed that well-structured SiO2 shell of 105 nm thick is uniformly formed around Fe3O4 (NPs size of 500 nm) surface. The application of the synthesized core–shell structures was investigated for methylene blue (MB), rhodamine B (Rh B) and methyl orange (MO) toxic dyes adsorptive removal from water by batch adsorption methods and different adsorption parameters such as time, pH, material dosage, concentration of solution and different dyes were optimized. The highest adsorption capacity (123 mg g−1) of MB dye was achieved on Fe3O4@SiO2. The isotherms and kinetic models exhibited that MB adsorption values are well described by Freundlich isotherm and pseudo-first-order kinetics models. The adsorptive binding of MB with Fe3O4@SiO2 was directed through electrostatic interaction and size filter effect. After regeneration, approximately 100% MB dye adsorption capacity was recovered. Thus, we can say that the Fe3O4@SiO2 is an outstanding material for dyes removal from water.


Adsorption Fe3O4@SiO2 Toxic dyes Isotherms Kinetics 



National Natural Science Foundation of China (Grant No. 21650110460 and 05E18040190) is greatly acknowledged for the present work.


  1. 1.
    S. Aslam, J. Zeng, F. Subhan, M. Li, F. Lyu, Y. Li, Z. Yan, In situ one-step synthesis of Fe3O4@ MIL-100 (Fe) core-shells for adsorption of methylene blue from water. J. Colloid Interface Sci. 505, 186–195 (2017)CrossRefPubMedGoogle Scholar
  2. 2.
    M. Teli, G.T. Nadathur, Adsorptive removal of acid yellow 17 (an anionic dye) from water by novel ionene chloride modified electrospun silica nanofibres. J. Environ. Chem. Eng. 6, 7257–7272 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Gao, S.-Q. Deng, X. Jin, S.-L. Cai, S.-R. Zheng, W.-G. Zhang, The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chem. Eng. J. 357, 129–139 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Sivamani, G. Leena, Removal of dyes from wastewater using adsorption-a review. Int. J. Biosci. Technol 2, 47–51 (2009)Google Scholar
  5. 5.
    S. Chen, C. Wang, D. Liu, Z. Zhu, Y. Qian, D. Luo, Y. Wang, Selective uptake of cationic organic dyes in a series of isostructural Co2+/Cd2+ metal-doped metal–organic frameworks. J. Solid State Chem. 270, 180–186 (2019)CrossRefGoogle Scholar
  6. 6.
    Q. Gao, J. Xu, X.-H. Bu, Recent advances about metal–organic frameworks in the removal of pollutants from wastewater, Coord. Chem. Rev. 378, 17–31 (2018)Google Scholar
  7. 7.
    Z. Zhang, J. Kong, Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 193, 325–329 (2011)CrossRefPubMedGoogle Scholar
  8. 8.
    C.R. Minitha, M. Martina Susan Arachy, R.T. Rajendra Kumar, Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites, Sep. Sci Technol. 53, 1–11(2018)CrossRefGoogle Scholar
  9. 9.
    J.T. Hernandez, A.A. Muriel, J. Tabares, G.P. Alcázar, A. Bolaños, Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption, In: Journal of physics: conference series, IOP Publishing; (2015), pp. 012007Google Scholar
  10. 10.
    L. Qu, T. Han, Z. Luo, C. Liu, Y. Mei, T. Zhu, One-step fabricated Fe3O4@C core-shell composites for dye removal: kinetics, equilibrium and thermodynamics. J. Phys. Chem. Solids 78, 20–27 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Wang, Q. Liu, M. Chang, J. Jang, W. Sui, C. Si, Y. Ni, Novel Fe3O4@ lignosulfonate/phenolic core-shell microspheres for highly efficient removal of cationic dyes from aqueous solution. Ind. Crops Prod. 127, 110–118 (2019)CrossRefGoogle Scholar
  12. 12.
    M. Shao, F. Ning, J. Zhao, M. Wei, D.G. Evans, X. Duan, Preparation of Fe3O4@ SiO2@ layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 134, 1071–1077 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Chen, Z. Xiong, L. Peng, Y. Gan, Y. Zhao, J. Shen, J. Qian, L. Zhang, W. Zhang, Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides. ACS Appl. Mater. Interfaces 7, 16338–16347 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Sadeghi, H. Azhdari, H. Arabi, A.Z. Moghaddam, Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J. Hazard. Mater. 215, 208–216 (2012)CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Zhao, J. Li, L. Zhao, S. Zhang, Y. Huang, X. Wu, X. Wang, Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core-shell magnetic microspheres for highly efficient sorption of U (VI). Chem. Eng. J. 235, 275–283 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Slováková, M. Sedlák, B. Křížková, R. Kupčík, R. Bulánek, L. Korecká, Č Drašar, Z. Bílková, Application of trypsin Fe3O4@SiO2 core/shell nanoparticles for protein digestion. Process Biochem. 50, 2088–2098 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Hong, Z. Yanling, D. Qianlin, W. Junwen, K. ZHANG, D. Guangyue, X. Xianmei, D. Chuanmin, Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@ SiO2 core and mesoporous CeO2 shell. J. Rare Earths 35, 984–994 (2017)CrossRefGoogle Scholar
  18. 18.
    U. Kalapathy, A. Proctor, J. Shultz, A simple method for production of pure silica from rice hull ash. Bioresour. Technol. 73, 257–262 (2000)CrossRefGoogle Scholar
  19. 19.
    Y. Cao, C. Li, J. Li, Q. Li, J. Yang, Magnetically separable Fe3O4/AgBr hybrid materials: highly efficient photocatalytic activity and good stability. Nanoscale Res. Lett. 10, 251 (2015)CrossRefPubMedCentralGoogle Scholar
  20. 20.
    G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao, X. Wang, Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 41, 6182–6188 (2012)CrossRefPubMedGoogle Scholar
  21. 21.
    L. Li, X.L. Liu, M. Gao, W. Hong, G.Z. Liu, L. Fan, B. Hu, Q.H. Xia, L. Liu, G.W. Song, The adsorption on magnetic hybrid Fe3O4/HKUST-1/GO of methylene blue from water solution. J. Mater. Chem. A 2, 1795–1801 (2014)CrossRefGoogle Scholar
  22. 22.
    S.-H. Huo, X.-P. Yan, Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449–7455 (2012)CrossRefGoogle Scholar
  23. 23.
    A.A. Alqadami, M. Naushad, Z. Alothman, T. Ahamad, Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism. J. Environ. Manag. 223, 29–36 (2018)CrossRefGoogle Scholar
  24. 24.
    N.F. Nejad, E. Shams, M. Amini, J. Bennett, Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene. Fuel Process. Technol. 106, 376–384 (2013)CrossRefGoogle Scholar
  25. 25.
    M.-F. Hou, C.-X. Ma, W.-D. Zhang, X.-Y. Tang, Y.-N. Fan, H.-F. Wan, Removal of rhodamine B using iron-pillared bentonite. J. Hazard. Mater. 186, 1118–1123 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    B. Hameed, M. El-Khaiary, Removal of basic dye from aqueous medium using a novel agricultural waste material: Pumpkin seed hull. J. Hazard. Mater. 155, 601–609 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    J. Wang, F. Xu, W. Xie, Z. Mei, Q. Zhang, J. Cai, W.-m. Cai, The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y. J. Hazard. Mater. 163, 538–543 (2009)CrossRefPubMedGoogle Scholar
  28. 28.
    A.K. Kaygun, S. Akyil, Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. J. Hazard. Mater. 147, 357–362 (2007)CrossRefPubMedGoogle Scholar
  29. 29.
    J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 259, 53–61 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Subhan, Z. Yan, P. Peng, M. Ikram, S. Rehman, The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis. J. Hazard. Mater. 270, 82–91 (2014)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of ChemistryAbdul Wali Khan University MardanMardanPakistan
  2. 2.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumQingdaoChina

Personalised recommendations