Preparation and application of ordered mesoporous carbon-based solid acid catalysts for transesterification and epoxidation

  • Lijuan Yang
  • Hong YuanEmail author
  • Siyu Wang


Ordered mesoporous carbon (OMC) was prepared via the inverse replication method using SBA-15 as a hard template and sucrose as a carbon precursor. OMC was sulfonated to obtain the solid acid catalysts, such as OMC-SS and OMC-DS, by heating with sulfuric acid or coupling with sulfanilic acid diazonium. TEM and small-angle X-ray diffraction (XRD) results showed that OMC, OMC-SS, and OMC-DS exhibited ordered porous structures. XPS and Raman analysis showed that OMC had graphite structure. N2-BET analysis indicated that OMC, OMC-SS, and OMC-DS had average pore diameters of 3.0–3.3 nm and exhibited bimodal mesopore size distributions. Moreover, N2-BET analysis revealed that OMC, OMC-SS, and OMC-DS had surface areas of 1411, 924 and 1001 m2/g, respectively. The surface acid contents of OMC-SS and OMC-DS were 3.9–4.0 mmol H+/ g and higher than those of OCM (2.8 mmol H+/g). FTIR results demonstrated that –SO3H was present on OMC-SS and OMC-DS. OMC-SS and OMC-DS were used to catalyze the transesterification and epoxidation of waste frying oil. The transesterification reactions catalyzed using OMC-SS and OMC-DS provided the maximum yields of fatty acid methyl esters of 90.3 ± 3.3% and 89.0 ± 2.1%, respectively. The double-bond conversion rates of epoxidation reactions catalyzed using OMC-SS and OMC-DS reached 77.2 ± 1.9% and 68.5 ± 2.6%, respectively. The epoxy yields of epoxidation reactions catalyzed using OMC-SS and OMC-DS were 70.3 ± 2.4% and 65.1 ± 1.8%, respectively.


Ordered mesoporous carbon Sulfonation Transesterification Epoxidation: waste frying oil 



Financial support for this work from the National Natural Science Foundation of Ningxia (NZ17094), National Natural Science Foundation of China (21266001), Ningxia scientific and technological innovation leading personnel training (KJT2017006), Leading talents in technological innovation (10,000 people plan), New Catalytic Process in Clean Energy Production (ZDZX201803), Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project, New Catalytic Process in Clean Energy Production (ZDZX201803) are gratefully acknowledged.


  1. 1.
    S.M.M. Ehteshami, S.H. Chan, Sep. Sci. Technol. 48(10), 1459–1466 (2013)Google Scholar
  2. 2.
    J. Torres-Perez, C. Gerente, Y. Andres, J. Environ. Sci. Health A 47(8), 1173–1185 (2012)Google Scholar
  3. 3.
    L. Zhou, J. Liu, X. Zhang, R. Liu, H. Huang, Nanoscale 6(11), 5831–5837 (2014)Google Scholar
  4. 4.
    R.J. Carmona, L.F. Velasco, E. Laurenti, V. Maurino, C.O. Ania, Front. Mater. 3, 9 (2016)Google Scholar
  5. 5.
    H. Chen, H. Wang, Z. Xue, Int. J. Hydrogen Energy 37(24), 18888–18894 (2012)Google Scholar
  6. 6.
    T.N. Phan, K.G. Min, R. Thangavel, S.L. Yun, H.K. Chang, J. Alloy Compd. 743, 639–645 (2018)Google Scholar
  7. 7.
    S. Jun, S.H. Joo, R. Ryoo, J. Am. Chem. Soc. 122(43), 10712–10713 (2000)Google Scholar
  8. 8.
    S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412(6843), 169–172 (2001)Google Scholar
  9. 9.
    M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S.H. Joo, R. Ryoo, J. Phys. Chem. B 106(6), 1256–1266 (2002)Google Scholar
  10. 10.
    J.Y.Z. Chiou, H. Kung, C. Wang, J. Saudi Chem. Soc. 21(2), 205–209 (2017)Google Scholar
  11. 11.
    C.C. Huang, Y.H. Li, Y.W. Wang, C.H. Chen, Int. J. Hydrogen Energy 38(10), 3994–4002 (2013)Google Scholar
  12. 12.
    Y. Li, B. Yuan. J. Fu, S. Deng, X. Lu, J. Colloid Interface Sci. 408(1), 181–190 (2013)Google Scholar
  13. 13.
    M. Regiart, J.L. Magallanes, D. Barrera, J. Villarroel-Rocha, K. Sapag, J. Rabaa, F.A. Bertolino, Sens. Actuator B 232, 765–772 (2016)Google Scholar
  14. 14.
    M. Zhang, A. Sun, Y. Meng, L. Wang, H. Jiang, G. Li, Microporous Mesoporous Mater. 204, 210–217 (2015)Google Scholar
  15. 15.
    E.W. Qian, L.P.P. Sukma, S. Li, A. Higashi, Environ. Prog. Sustain. 35(2), 574–561 (2016)Google Scholar
  16. 16.
    X. Dong, Y. Jiang, W. Shan, M. Zhang, RSC Adv. 6, 17118–17124 (2016)Google Scholar
  17. 17.
    G. Tian, J.X. Geng, Y.D. Jin, C.L. Wang, S.Q. Li, J. Hazard. Mater. 190(1), 442–450 (2011)Google Scholar
  18. 18.
    J.H. Kim, T. Kim, Y.C. Jeong, K. Lee, K.T. Park, Adv. Energy Mater. 5(14), 1500268 (2015)Google Scholar
  19. 19.
    Z.X. Du, Z. Tang, H.J. Wang, J. Zeng, Y. Chen, Chin. J. Catal. 34(1), 101–115 (2013)Google Scholar
  20. 20.
    N.Y. Yahya, N. Ngadi, M. Jusoh, N.A.A. Halim, Energy Convers. Manag. 129, 275–283 (2016)Google Scholar
  21. 21.
    I.K. Hong, H. Jeon, H. Kim, S.B. Lee, J. Ind. Eng. Chem. 42, 107–112 (2016)Google Scholar
  22. 22.
    C. Wang, T.T. Shen, X.K. Wang, Y.J. Tenside, Surfactant Deterg. 54(1), 64–70 (2017)Google Scholar
  23. 23.
    T. Mawatari, R. Fukuda, H. Mori, S. Mia, N. Ohno, Tribol. Lett. 51(2), 273–280 (2013)Google Scholar
  24. 24.
    X.Q. Liu, Y.C. Yang, B. Gao, Y.C. Li, J. Appl. Polym. Sci. 133(41), 44097 (2016)Google Scholar
  25. 25.
    G. Feng, L. Hu, Y. Ma, P. Jia, Y. Hu, M. Zhang, C. Liu, Y. Zhou, J. Clean Prod. 189, 334–343 (2018)Google Scholar
  26. 26.
    L.C. Meher, D. Vidya Sagar, S.N. Naik, Renew. Sust. Energy Rev. 10(3), 248–268 (2006)Google Scholar
  27. 27.
    H.B. Gao, Organic Chemistry, 4th edn. (Higher Education Press, Beijing, 2005), pp. 99–101Google Scholar
  28. 28.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemlka, G.D. Stucky, Science 279, 548–552 (1998)Google Scholar
  29. 29.
    S. Sinadinović-Fišer, M. Janković, O. Borota, Chem. Eng. Process 62(6), 106–113 (2012)Google Scholar
  30. 30.
    L. Fang, K. Zhang, L. Chen. W.U. Peng, Chin. J. Catal. 34(5), 932–941 (2013)Google Scholar
  31. 31.
    A. Węgrzyniak, S. Jarczewski, A. Wach, E. Hędrzak, P. Kuśtrowsk, P. Michorczyk, Appl. Catal. A 508, 1–9 (2015)Google Scholar
  32. 32.
    J.M. Juárez, B.C. Ledesma, M.G. Costa, A.R. Beltramone, O.A. Anunziata, Microporous Mesoporous Mater. 254, 146–152 (2017)Google Scholar
  33. 33.
    M.J. Lázaro, L. Calvillo, E.G. Bordejé, R.R. Moliner, Microporous Mesoporous Mater. 103, 158–165 (2007)Google Scholar
  34. 34.
    J. Cheng, S. Jin, R. Zhang, Microporous Mesoporous Mat. 212, 137–145 (2015)Google Scholar
  35. 35.
    L. Peng, A. Philippaerts, X.X. Ke, J. Van Noyen, F. De Clippel, G. Van Tendeloo, P.A. Jacobs, B.F. Sels, Catal. Today 150(1), 140–146 (2010)Google Scholar
  36. 36.
    X. Dong, Y. Jiang, W. Shan, RSC Adv. 6(21), 17118–17124 (2016)Google Scholar
  37. 37.
    M. Lezanska, P. Pietrzyk, Sojka, J. Phys. Chem. C 114(2), 1208–1216 (2010)Google Scholar
  38. 38.
    P. Karandikar, K.R. Patil, A. Mitra, B. Kakade, A.J. Chandwadkar, Microporous Mesoporous Mater. 98, 189–199 (2007)Google Scholar
  39. 39.
    L. Rivoira, J. Juárez, H. Falcón, Catal. Today 282, 123–132 (2017)Google Scholar
  40. 40.
    H. Darmstadt, C. Roy, S. Kaliaguine, Carbon 40(14), 2673–2683 (2002)Google Scholar
  41. 41.
    W. Zhang, J. Cui, C.A. Tao, Angew. Chem. Int. Ed. 48(32), 5864–5868 (2009)Google Scholar
  42. 42.
    B.C. Ledesma, J.M. Juárez, V.A. Valles, Catal. Lett. 147(4), 1029–1039 (2017)Google Scholar
  43. 43.
    M. Zong, Z. Duan, W. Lou, T. Smith, H. Wu, Green Chem. 9(5), 434–437 (2007)Google Scholar
  44. 44.
    L. Geng, Y. Wang, G. Yu, Y. Zhu, Catal. Commun. 13(1), 26–30 (2011)Google Scholar
  45. 45.
    W. Li, T. Zhang, G. Pei, Bio Resour. 13(1), 1425–1440 (2018)Google Scholar
  46. 46.
    A.S. Saraç, J. Springer, Surf. Coat. Technol. 160(2–3), 227–238 (2002)Google Scholar
  47. 47.
    Z.H. Gao, S.K. Tang, X.l. Cui, S.J. Tian, M.H. Zhang, Fuel 140, 669–676 (2015)Google Scholar
  48. 48.
    E.M. Björk, M.P. Militello, L.H. Tamborini, Appl. Catal. A 533, 49–58 (2017)Google Scholar
  49. 49.
    K.A. Shah, K.C. Maheria, J.K. Parikh, Energy Source Part A 38(10), 1470–1477 (2016)Google Scholar
  50. 50.
    A. Patel, N. Narkhede, Catal. Sci. Technol. 3(12), 3317–3325 (2013)Google Scholar
  51. 51.
    B. Karimi, H.M. Mirzaei, A. Mobaraki, Catal. Sci. Technol. 2(4), 828–834 (2012)Google Scholar
  52. 52.
    K.F. Carvalho, L.R.V. Da Conceicoa, J.P.V. Silva, Fuel 202, 503–511 (2017)Google Scholar
  53. 53.
    R. Turco, R. Vitiello, V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, Green Process Synth. 2, 427–434 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanChina
  2. 2.State Key Laboratory of National Ethnic Affairs Commission Chemical TechnologyNorth Minzu UniversityYinchuanChina

Personalised recommendations