Novel hierarchical HZSM-5 zeolites prepared by combining desilication and steaming modification for converting methanol to propylene process

  • Fatemeh Gorzin
  • Jafar Towfighi DarianEmail author
  • Fereydoon Yaripour
  • Seyyed Mohammad Mousavi


The effect of mesoporosity formation and acidity modification have been investigated by desilication and combined desilication–dealumination treatments over highly siliceous zeolite HZSM-5 (Si/Al = 200) and its catalytic performance has been studied in the conversion of methanol to propylene (MTP) reaction. Desilication of a conventional microporous HZSM-5 catalyst was performed using NaOH, mixtures of NaOH and tetrapropylammonium hydroxide (TPAOH), and mixtures of NaOH and tetrabutylammonium hydroxide (TBAOH) with different ratios. Subsequent mild steaming treatment has been used to modify acidity of the selected samples. The physicochemical properties of all samples were characterized by XRD, FE-SEM, BET and NH3-TPD methods. Textural and acidity properties confirmed that TBAOH is more effective than TPAOH in the mesoporosity formation, micropore volume preservation, and acidity modification. Steaming treatment after desilication over the sample with TPAOH/(NaOH + TPAOH) ratio of 0.4, led to increase in selectivities to propylene from 38.4 to 41.3%, and total light olefins from 69.4 to 76.6%, while it led to decrease in C5+ components selectivity from 14.8 to 10.1%. The combined alkaline-steam treatment over the sample with TBAOH/(NaOH + TBAOH) ratio of 0.2 compared to the parent one led to considerable higher selectivities to propylene (44.8 vs. 30.7%), total light olefins (84.1 vs. 57.9%), as well as lower selectivities to C5+ components (7.4% vs. 27.1%). Moreover, this sample showed double lifetime (830 h) in MTP reaction compared to the conventional micropore ZSM-5 catalyst (425 h). The results showed that desilication led to a remarkable mesoporosity development, while steaming treatment generally influenced on the HZSM-5 acidity. Therefore, the combined alkaline-steam treatment leads to HZSM-5 zeolite formation with tailored pore architecture and surface acidic properties.


High silica ZSM-5 Hierarchical zeolites Desilication Steaming modification TPAOH TBAOH Methanol to propylene (MTP) 


Supplementary material

10934_2019_740_MOESM1_ESM.docx (863 kb)
Supplementary material 1 (DOCX 863 KB)


  1. 1.
    M. Khanmohammadi, Sh Amani, A.B. Garmarudi, A. Niaei, Chin. J. Catal. 37, 325–339 (2016)CrossRefGoogle Scholar
  2. 2.
    F. Gorzin, J. Towfighi Darian, F. Yaripour, S.M. Mousavi, RSC Adv. 8, 41131–41142 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, J. Catal. 258, 243–249 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Rostamizadeh, A. Taeb, J. Ind. Eng. Chem. 27, 297–306 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, J. Nat. Gas Sci. Eng. 22, 260–269 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Liu, C. Zhang, Z. Shen, W. Hua, Y. Tang, W. Shen, Y. Yue, H. Xu, Catal. Commun. 10, 1506–1509 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Abelló, A. Bonilla, J. Pérez-Ramírez, Appl. Catal. A 364, 191–198 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng. 23, 184–194 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Serrano, P. Pizarro, Chem. Soc. Rev. 42, 4004–4035 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Möller, T. Bein, Chem. Soc. Rev. 42, 3689–3707 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Čejka, S. Mintova, Catal. Rev. 49, 457–509 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Cheng, L.-J. Wang, J.-S. Li, Y.-C. Yang, X.-Y. Sun, Mater. Lett. 59, 3393–3397 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, Z. Gao, J. Mater. Chem. 12, 1812–1818 (2002)CrossRefGoogle Scholar
  14. 14.
    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 45, 3353–3376 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Dehertog, G. Froment, Appl. Catal. A 71, 153–165 (1991)CrossRefGoogle Scholar
  16. 16.
    R. Chal, C. Gerardin, M. Bulut, S. Van Donk, ChemCatChem 3, 67–81 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896–910 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Ahmadpour, M. Taghizadeh, C. R. Chim 18, 834–847 (2015)CrossRefGoogle Scholar
  19. 19.
    Z. Hasan, J.W. Jun, C.-U. Kim, K.-E. Jeong, S.-Y. Jeong, S.H. Jhung, Mater. Res. Bull. 61, 469–474 (2015)CrossRefGoogle Scholar
  20. 20.
    I.M. Dahl, S. Kolboe, J.Catal. 149, 458–464 (1994)CrossRefGoogle Scholar
  21. 21.
    M. Stöcker, Zeolites and Catalysis: Synthesis, Reactions and Applications. Wiley, Weinheim, 687–711 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Tzoulaki, A. Jentys, J. Pérez-Ramírez, K. Egeblad, J.A. Lercher, Catal. Today 198, 3–11 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Mlekodaj, K. Tarach, J. Datka, K. Góra-Marek, W. Makowski, Microporous Mesoporous Mater. 183, 54–61 (2014)CrossRefGoogle Scholar
  24. 24.
    I.M. Dahl, S. Kolboe, Catal. Lett. 20, 329–336 (1993)CrossRefGoogle Scholar
  25. 25.
    M. Bjørgen, F. Joensen, M.S. Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Sadowska, K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J.M. Triguero, F. Rey Microporous Mesoporous Mater. 168, 195–205 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Sadowska, A. Wach, Z. Olejniczak, P. Kuśtrowski, J. Datka, Microporous Mesoporous Mater. 167, 82–88 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Kumar, A. Sinha, S. Hegde, S. Sivasanker, J. Mol. Catal. A 154, 115–120 (2000)CrossRefGoogle Scholar
  29. 29.
    G. Liu, P. Tian, Y. Zhang, J. Li, L. Xu, S. Meng, Z. Liu, Microporous Mesoporous Mater. 114, 431–439 (2008)CrossRefGoogle Scholar
  30. 30.
    M. Rostamizadeh, F. Yaripour, J. Taiwan Inst. Chem. Eng. 71, 454–463 (2017)CrossRefGoogle Scholar
  31. 31.
    L.H. Ong, M. Dömök, R. Olindo, A.C. van Veen, J.A. Lercher, Microporous Mesoporous Mater. 164, 9–20 (2012)CrossRefGoogle Scholar
  32. 32.
    M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, fifth (5th) revised edition (Elsevier, Boston, 2007)Google Scholar
  33. 33.
    C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of zeolite framework types (Elsevier, Boston, 2007)Google Scholar
  34. 34.
    U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Angew. Chem. Int. Ed. 51, 5810–5831 (2012)CrossRefGoogle Scholar
  35. 35.
    M.L. Gou, R. Wang, Q. Qiao, X. Yang, Microporous Mesoporous Mater. 206, 170–176 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Fu, J. Chang, J. Shao, Z. Li, J. Energy Chem. 26, 139–146 (2017)CrossRefGoogle Scholar
  37. 37.
    D. Verboekend, J. Pérez-Ramírez, Chem. Eur. J. 17, 1137–1147 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Abelló, J. Pérez-Ramírez, Phys.Chem.Chem.Phys. 11, 2959–2963 (2009)CrossRefGoogle Scholar
  39. 39.
    R. Caicedo-Realpe, J. Pérez-Ramírez, Microporous Mesoporous Mater. 128, 91–100 (2010)CrossRefGoogle Scholar
  40. 40.
    N. Viswanadham, R. Kamble, M. Singh, M. Kumar, G.M. Dhar, Catal.Today 141, 182–186 (2009)CrossRefGoogle Scholar
  41. 41.
    J.V. Smith, Chem. Rev. 88, 149–182 (1988)CrossRefGoogle Scholar
  42. 42.
    A. Čižmek, B. Subotić, R. Aiello, F. Crea, A. Nastro, C. Tuoto, Microporous Mater. 4, 159–168 (1995)CrossRefGoogle Scholar
  43. 43.
    F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Microporous Mesoporous Mater. 203, 41–53 (2015)CrossRefGoogle Scholar
  44. 44.
    S.M. Campbell, X.-Z. Jiang, R.F. Howe, Microporous Mesoporous Mater. 29, 91–108 (1999)CrossRefGoogle Scholar
  45. 45.
    M. Rostamizadeh, A. Taeb, Synth. React. Inorg. M. 46(5), 665–671 (2016)Google Scholar
  46. 46.
    S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, J. Am.Chem.Soc. 128, 14770–14771 (2006)CrossRefGoogle Scholar
  47. 47.
    M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 249, 195–207 (2007)CrossRefGoogle Scholar
  48. 48.
    S. Zhang, Y. Gong, L. Zhang, Y. Liu, T. Dou, J. Xu, F. Deng, Fuel Process.Technol. 129, 130–138 (2015)CrossRefGoogle Scholar
  49. 49.
    Y. Fan, X. Bao, X. Lin, G. Shi, H. Liu, J. Phys. Chem. B 110, 15411–15416 (2006)CrossRefGoogle Scholar
  50. 50.
    J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 87, 153–161 (2005)CrossRefGoogle Scholar
  51. 51.
    L. Jin, H. Hu, S. Zhu, B. Ma, Catal. Today 149, 207–211 (2010)CrossRefGoogle Scholar
  52. 52.
    W.Y. Dong, Y.-J. Sun, H.-Y. He, Y.-C. Long, Microporous Mesoporous Mater. 32, 93–100 (1999)CrossRefGoogle Scholar
  53. 53.
    J. Kim, M. Choi, R. Ryoo, J. Catal. 269, 219–228 (2010)CrossRefGoogle Scholar
  54. 54.
    A.A. Rownaghi, F. Rezaei, J. Hedlund, Microporous Mesoporous Mater. 151, 26–33 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Maier, Angew. Chem. Int. Ed. Engl. 32, 528–542 (1993)CrossRefGoogle Scholar
  56. 56.
    M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Pérez-Ramírez, Nat. Commun. 5, 3922–3932 (2014)CrossRefGoogle Scholar
  57. 57.
    M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246–249 (2009)CrossRefGoogle Scholar
  58. 58.
    D.M. Bibby, R.F. Howe, G.D. McLellan, Appl. Catal. A 93, 1–34 (1992)CrossRefGoogle Scholar
  59. 59.
    M. Suzuki, F.-Y. Dai, I. Saito, Stud. Surf. Sci. Catal. 28, 223–230 (1986)CrossRefGoogle Scholar
  60. 60.
    A. Xu, H. Ma, H. Zhang, D. Weiyong, D. Fang, Pol. J. Chem. Technol. 15, 95–101 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatemeh Gorzin
    • 1
  • Jafar Towfighi Darian
    • 1
    Email author
  • Fereydoon Yaripour
    • 2
  • Seyyed Mohammad Mousavi
    • 1
  1. 1.Department of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Catalysis Research GroupPetrochemical Research & Technology Company, National Iranian Petrochemical CompanyTehranIran

Personalised recommendations