Advertisement

Fast microwave dried mechanical robust melamine sponge/methyltrimethoxysilane-based silica aerogel composites with bendability and superhydrophobicity

  • Tan Guo
  • Rong Chen
  • Shimin Wu
  • Lijing Zhang
  • Shan YunEmail author
  • Jiadong Zhang
  • Yanxing Li
  • Huaju Li
  • Aibing HuangEmail author
Article
  • 49 Downloads

Abstract

In this work, melamine sponge (MS) reinforced methyltrimethoxysilane (MTMS)-based silica aerogels were fabricated via a sol–gel method followed by fast microwave drying. The aerogel composites with large size (20 × 20 × 2 cm) can be dried within 30 min. The MS/MTMS-based silica aerogel composites exhibit macro-pore structure, low density (95–178 kg m−3), excellent integrity and bending flexibility, together with high mechanical strength (Young’s modulus up to 4.787 MPa). Moreover, the superhydrophobicity with a contact angle as high as 164° and a low thermal conductivity of 0.033 W m−1 K−1 are demonstrated. Our work offers an effective method to fabricate high-quality aerogel composites as promising candidates for energy-saving applications.

Keywords

Aerogel Methyltrimethoxysilane Microwave drying Mechanical strength Superhydrophobicity 

Notes

Acknowledgements

This study was financially supported by Natural Science Fund for Colleges and Universities in Jiangsu Province (Contract No: 17KJB430004), National Natural Science Foundation of China (Grant No.: 21605055), Natural Science Foundation of Jiangsu Province (Grants No.: BK20160424) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.: SJCX17-0696).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    N. Hüsing, U. Schubert, Aerogels-airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)CrossRefGoogle Scholar
  2. 2.
    L.W. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Laskowski, B. Milow, L. Ratke, Aerogel-aerogel composites for normal temperature range thermal insulations. J. Non-Cryst. Solids 441, 42–48 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Jia, Z. Li, P. Liu, Q. Jing, Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. J. Non-Cryst. Solids 482, 192–202 (2018)CrossRefGoogle Scholar
  5. 5.
    S. He, X. Cheng, Z. Li, X. Shi, K. Li, H. Zhang, Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical property and excellent absorptivity. Mater. Lett. 154, 107–111 (2015)CrossRefGoogle Scholar
  6. 6.
    Z. Shao, X. He, X. Cheng, Y. Zhang, A simple facile preparation of methyltriethoxysilane based flexible silica aerogel monoliths. Mater. Lett. 204, 93–96 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility. Langmuir 32, 13427–13434 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Aoki, T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability. J. Sol-Gel. Sci. Technol. 81, 42–51 (2017)CrossRefGoogle Scholar
  9. 9.
    S.S. Prakash, C.J. Brinker, A.J. Hurd, S.M. Rao, Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374, 439–443 (1995)CrossRefGoogle Scholar
  10. 10.
    S.S. Prakash, C.J. Brinker, A.J. Hurd, Silica aerogel films at ambient pressure. J. Non-Cryst. Solids 190, 264–275 (1995)CrossRefGoogle Scholar
  11. 11.
    C.J. Brinker, S.S. Prakash, Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films, US Patent 5,948,482 (1999)Google Scholar
  12. 12.
    M.A. Einarsrud, E. Nilsen, Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 226, 122–128 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Hæreid, M. Dahle, S. Lima, M.A. Einarsrud, Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J. Non-Cryst. Solids 186, 96–103 (1995)CrossRefGoogle Scholar
  14. 14.
    J. Li, Y. Lei, D. Xu, F. Liu, J. Li, A. Sun, J. Guo, G. Xu, Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. J. Sol-Gel. Sci. Technol. 82, 702–711 (2017)CrossRefGoogle Scholar
  15. 15.
    U.K.H. Bangi, I.K. Jung, C.S. Parka, S. Baek, H.H. Park, Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process and ambient pressure drying. Solid State Sci. 18, 50–57 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Schwertfeger, D. Frank, M. Schmidt, Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids. 225, 24–29 (1998)CrossRefGoogle Scholar
  17. 17.
    S.W. Hwang, T.Y. Kim, S.H. Hyun, Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-dryin. Microporous Mesoporous Mater. 130, 295–302 (2010)CrossRefGoogle Scholar
  18. 18.
    A.P. Rao, G.M. Pajonk, A.V. Rao, Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels. J. Mater. Sci. 40, 3481–3489 (2005)CrossRefGoogle Scholar
  19. 19.
    A.P. Rao, A.V. Rao, G.M. Pajonk, P.M. Shewale, Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J. Mater. Sci. 42, 8418–8425 (2007)CrossRefGoogle Scholar
  20. 20.
    B. Xu, J.Y. Cai, N. Finn, Z. Cai, An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure part I: process development and macrostructures of the aerogels. Microporous Mesoporous Mater. 148, 145–151 (2012)CrossRefGoogle Scholar
  21. 21.
    A.V. Rao, S.D. Bhagat, H. Hirashima, G.M. Pajonk, Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci. 300, 279–285 (2006)CrossRefGoogle Scholar
  22. 22.
    K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada, New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Yun, T. Guo, J. Zhang, L. He, Y. Li, H. Li, X. Zhu, Y. Gao, Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying. J. Sol-Gel. Sci. Technol. 83, 53–63 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Sai, L. Xing, J. Xiang, L. Cui, J. Jiao, C. Zhao, Z. Li, F. Li, Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J. Mater. Chem. A 1, 7963–7970 (2013)CrossRefGoogle Scholar
  25. 25.
    W. Zhang, X. Zhai, T. Xiang, M. Zhou, D. Zang, Z. Gao, C. Wang, Superhydrophobic melamine sponge with excellent surface selectivity and fire retardancy for oil absorption. J. Mater. Sci. 52, 73–85 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Ruan, K. Ai, X. Li, L. Lu, A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew. Chem. Int. Ed. 53, 5556–5560 (2014)CrossRefGoogle Scholar
  27. 27.
    J.C.H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M.M. Koebel, Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous Mesoporous Mater. 217, 150–158 (2015)CrossRefGoogle Scholar
  28. 28.
    G.R. lenza, W. Vasconcelos, Evaluation of the influence of microwaves in the structure of silica gels. Mater. Res. 5, 447–451 (2002)CrossRefGoogle Scholar
  29. 29.
    C.J. Brinker, R. Deshpande, D.M. Smith, Preparation of high porosity xerogels by chemical surface modification. US Patent 5,565,142 (1996)Google Scholar
  30. 30.
    T.Y. Wei, S.Y. Lu, Y.C. Chang, Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. J. Phys. Chem. B 112, 11881–11886 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Groβ, J. Fricke, Scaling of elastic properties in highly porous nanostructured aerogels. Nanostruct. Mater. 6, 905–908 (1995)CrossRefGoogle Scholar
  32. 32.
    Z. Shao, F. Luo, X. Chen, Y. Zhang, Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 141, 570–575 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt ResourceHuaiyin Institute of TechnologyHuai’anChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations