SBA-15-supported Cu (II)/Schiff-base complex as an efficient and recyclable catalyst for one-pot azide-alkyne cycloaddition reaction

  • Alireza BananEmail author
  • Fatemeh Nikbakht
  • Saeed Ataie


A new complex of copper (II) was synthesized through the reaction of a Schiff-base, 4-(((2-hydroxyethyl)imino)methyl)phenol, with CuCl2·2H2O and, then, immobilization on SBA-15 support. Both immobilized and free copper complexes were characterized using different techniques such as FT-IR, elemental analysis (CHN), SEM, XRD and TEM, and were utilized as catalysts in one-pot azide-alkyne cycloaddition (AAC) reaction. Both catalysts showed high activity in conversion of various substrates to corresponding triazole compounds. The reaction was performed in water under mild condition and without any extra additives. The prepared catalyst was recovered and reused in 5 runs without any significant loss of activity.


Copper (II) complex Azide–alkyne cycloaddition 1,2,3-Triazoles SBA-15 support Heterogeneous catalyst Click reaction 



We gratefully acknowledge the funding support received from the Research Council of Azarbaijan Shahid Madani University.

Supplementary material

10934_2019_737_MOESM1_ESM.doc (7.7 mb)
Supplementary material 1 (DOC 7835 KB)


  1. 1.
    V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. 114, 2708–2711 (2002)CrossRefGoogle Scholar
  2. 2.
    C.W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 67, 3057–3064 (2002)CrossRefGoogle Scholar
  3. 3.
    R. Nie, R. Sang, X. Ma, Y. Zheng, X. Cheng, W. Li, L. Guo, H. Jin, Y. Wu, J. Catal. 344, 286–292 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Layek, S. Kumari, B. Agrahari, R. Ganguly, D.D. Pathak, Inorg. Chim. Acta 453, 735–741 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Zhu, C.J. Brassard, X. Zhang, P.M. Guha, R.J. Clark, Chem. Rec. 16, 1501–1517 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Liu, N. Novoa, C. Manzur, D. Carrillo, J.-R. Hamon, New J. Chem. 40, 3308–3313 (2016)CrossRefGoogle Scholar
  7. 7.
    D. Astruc, R. Ciganda, C. Deraedt, S. Gatard, L. Liang, N. Li, C. Ornelas, A. Rapakousiou, J. Ruiz, D. Wang, Synlett 26, 1437–1449 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Wang, F. Yang, Y. Cao, X. He, Y. Tang, Y. Li, RSC Adv. 7, 9567–9572 (2017)CrossRefGoogle Scholar
  9. 9.
    A.A. Jafari, H. Mahmoudi, H. Firouzabadi, RSC Adv. 5, 107474–107481 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Yu, L. Jiang, C. Shen, W. Xu, P. Zhang, Catal. Commun. 79, 11–16 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Nasr-Esfahani, I. Mohammadpoor-Baltork, A.R. Khosropour, M. Moghadam, V. Mirkhani, S. Tangestaninejad, H. Amiri, Rudbari, J. Org. Chem. 79, 1437–1443 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Han, X. Xiao, L. Wang, W. Ye, X. Liu, Chin. J. Catal. 37, 1446–1450 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Akbari, N. Arsalani, M. Amini, E. Jabbari, J. Mol. Catal. A: Chem. 414, 47–54 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Zarnegaryan, M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, Polyhedron 115, 61–66 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Amini, A. Pourvahabi Anbari, S. Ramezani, S. Gautam, K. Hwa Chae, Chem. Select 1, 4607–4612 (2016)Google Scholar
  16. 16.
    C. Zhou, J. Zhang, P. Liu, J. Xie, B. Dai, RSC Adv. 5, 6661–6665 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Nunes, L. Djakovitch, L. Khrouz, F.-X. Felpin, V. Dufaud, Mol. Catal. 437, 150–157 (2017)CrossRefGoogle Scholar
  18. 18.
    I. Jlalia, F. Gallier, N. Brodie-Linder, J. Uziel, J. Augé, N. Lubin-Germain, J. Mol. Catal. A 393, 56–61 (2014)CrossRefGoogle Scholar
  19. 19.
    M.L. Kantam, V.S. Jaya, B. Sreedhar, M.M. Rao, B. Choudary, J. Mol. Catal. 256, 273–277 (2006)CrossRefGoogle Scholar
  20. 20.
    H. Sharghi, R. Khalifeh, M.M. Doroodmand, Adv. Synth. Catal. 351, 207–218 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, C. Dong, C. Yang, D. Hu, J. Long, L. Wang, H. Li, Y. Chen, D. Kong, Adv. Synth. Catal. 352, 1600–1604 (2010)CrossRefGoogle Scholar
  22. 22.
    F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Adv. Synth. Catal. 352, 3208–3214 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Org. Biomol. Chem. 9, 6385–6395 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Alonso, Y. Moglie, G. Radivoy, M. Yus, J. Org. Chem. 76, 8394–8405 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Bahrami, M.S. Arabi, New J. Chem. 40, 3447–3455 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Veerakumar, M. Velayudham, K.-L. Lu, S. Rajagopal, Catal. Sci. Technol. 1, 1512–1525 (2011)CrossRefGoogle Scholar
  27. 27.
    F.M. Moghaddam, S.E. Ayati, H.R. Firouzi, F. Ghorbani, Appl. Organomet. Chem. 30, 488–493 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Masuyama, K. Yoshikawa, N. Suzuki, K. Hara, A. Fukuoka, Tetrahedron Lett. 52, 6916–6918 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Chassaing, A. Sani Souna Sido, A. Alix, M. Kumarraja, P. Pale, J. Sommer, Chem. A Eu. J. 14, 6713–6721 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Pourjavadi, N. Safaie, S.H. Hosseini, C. Bennett, Appl. Organomet. Chem. 29, 601–607 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Hosseinzadeh, H. Sepehrian, F. Shahrokhi, Heteroat. Chem. 23, 415–421 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Rathod, P. Sharma, P. Pandey, A. Singh, P. Kumar, J. Porous Mater. 24, 837–846 (2017)CrossRefGoogle Scholar
  33. 33.
    F. Li, T. Hor, Chem. Eur. J. 15, 10585–10592 (2009)CrossRefGoogle Scholar
  34. 34.
    K. Gupta, A.K. Sutar, Coord. Chem. Rev. 252, 1420–1450 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Khanmoradi, M. Nikoorazm, A. Ghorbani-Choghamarani, Appl. Organomet. Chem. 31, (2017)Google Scholar
  36. 36.
    M. Zendehdel, F. Zamani, J. Porous Mater. 24, 1263–1277 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, P. Jiang, Y. Shen, W. Zhang, G. Bian, J. Porous Mater. 23, 431–440 (2016)CrossRefGoogle Scholar
  38. 38.
    L.-N. Sun, H.-J. Zhang, C.-Y. Peng, J.-B. Yu, Q.-G. Meng, L.-S. Fu, F.-Y. Liu, X.-M. Guo, J. Phys. Chem. B 110, 7249–7258 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Gimenez, C.D. Nunes, P.D. Vaz, A.A. Valente, P. Ferreira, M.J. Calhorda, J. Mol. Catal. A. 256, 90–98 (2006)CrossRefGoogle Scholar
  40. 40.
    R.A. Meyers, Encyclopedia of Analytical Chemistry, Wiley, New York (2000)Google Scholar
  41. 41.
    Y. Li, B. Yan, J.-L. Liu, Nanoscale Res. Lett. 5, 797 (2010)CrossRefGoogle Scholar
  42. 42.
    X. Wang, Y.-H. Tseng, J.C. Chan, S. Cheng, Microporous Mesoporous Mater. 85, 241–251 (2005)CrossRefGoogle Scholar
  43. 43.
    C.D. Nunes, M. Pillinger, A.A. Valente, J. Rocha, A.D. Lopes, I.S. Gonçalves, Eur. J. Inorg. Chem. 2003, 3870–3877 (2003)Google Scholar
  44. 44.
    B. Lei, B. Li, H. Zhang, L. Zhang, W. Li, J. Phys. Chem. C 111, 11291–11301 (2007)CrossRefGoogle Scholar
  45. 45.
    K.R. Reddy, K. Rajgopal, M.L. Kantam, Synlett 2006, 957–959 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Department of ChemistryTarbiat Modares UniversityTehranIran
  3. 3.Chemistry DepartmentSharif University of TechnologyTehranIran

Personalised recommendations