Advertisement

In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage

  • Yunjian Chen
  • Ni WangEmail author
  • Wencheng Hu
  • Sridhar KomarneniEmail author
Article
  • 71 Downloads

Abstract

Porous Ni/Co-organic framework with honeycomb-like structure was directly grown on the carbon cloth (Ni/Co-MOF@CC) through a hydrothermal process. The Ni/Co-MOF@CC displayed a high specific surface area with an average pore size of 3.05 nm and excellent conductivity. The electrochemical performances of the porous Ni/Co-MOF@CC as the electrode of supercapacitors were evaluated using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 2 M KOH electrolyte. The Ni/Co-MOF@CC electrode exhibited a maximal specific capacity of 1180.5 mC cm−2 at 3 mA cm−2, good high-rate discharge ability (624.1 mC cm−2 at 60 mA cm−2), and long-term cycling life (97.6% capacity retention after 5000 cycles). Our experiments demonstrated the practical application of mixed-MOFs as supercapacitors for next-generation energy storage devices.

Keywords

Honeycomb-like structure Ni/Co-MOF@CC Hydrothermal Long-time cycling life 

Notes

References

  1. 1.
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRefGoogle Scholar
  2. 2.
    X. Wang, Y. Yang, Y. Zhang, Q. Li, M. Gong, R. Zhang, S. Xiong, Facile synthesis and capacitance properties of N-doped porous carbon/iron oxide composites through the single-step pyrolysis of coal-based polyaniline. J. Porous Mater. 25, 845–853 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Wang, H. Song, H. Ren, J. Chen, M. Yao, W. Huang, W. Hu, S. Komarneni, Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem. Eng. J. 358, 531–539 (2019)CrossRefGoogle Scholar
  4. 4.
    K. Chen, D. Xue, Colloidal supercapattery: redox ions in electrode and electrolyte. Chem. Rec. 18, 282–292 (2018)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, K. Zhou, J. Lei, W. Hu, Nitrogen dual-doped porous carbon fiber: a binder-free and high-performance flexible anode for lithium ion batteries. Appl. Surf. Sci. 467, 992–999 (2019)CrossRefGoogle Scholar
  6. 6.
    C. Ma, R. Wang, Z. Xie, H. Zhang, Z. Li, J. Shi, Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J. Porous Mater. 24, 1437–1445 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Chen, S. Xiao, J. Liu, Z. Li, Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. J. Porous Mat. 25, 1783–1788 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. An, Y. Liu, P. An, J. Dong, B. Xu, Y. Dai, X. Qin, X. Zhang, M.-H. Whangbo, B. Huang, NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7, 1602733 (2017)CrossRefGoogle Scholar
  10. 10.
    T.Q.N. Tran, G. Das, H.H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sens. Actuators B 243, 78–83 (2017)CrossRefGoogle Scholar
  11. 11.
    K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451–7457 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li, Z. Jin, J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan, Y.-J. Zeng, Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochim. Acta 281, 189–197 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Gholipour-Ranjbar, M. Soleimani, H.R. Naderi, Application of Ni/Co-based metal-organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J. Chem. 40, 9187–9193 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Jia, G. Chen, D. Chen, J. Pei, Y. Hu, Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A 5, 23744–23752 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017)CrossRefGoogle Scholar
  16. 16.
    Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, B. Cheng, Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J. Mater. Chem. A 5, 19323–19332 (2017)CrossRefGoogle Scholar
  17. 17.
    Z. Jia, G. Wu, D. Wu, Z. Tong, W.S.W. Ho, Preparation of ultra-stable ZIF-8 dispersions in water and ethanol. J. Porous Mater. 24, 1655–1660 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Liang, K. Chen, D. Xue, A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 8, 26 (2018)Google Scholar
  19. 19.
    P. Zhao, N. Wang, W. Hu, S. Komarneni, Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.02.101 Google Scholar
  20. 20.
    A. Eftekhari, Metrics for fast supercapacitors as energy storage devices. ACS Sustain. Chem. Eng. 7, 3688–3691 (2019)CrossRefGoogle Scholar
  21. 21.
    C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Chen, D. Xue, High energy density hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode. ACS Appl. Mater. Inter. 8, 29522–29528 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Liu, C. Zhang, H. Song, C. Zhang, Y. Liu, X. Nan, G. Cao, Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22, 290–300 (2016)CrossRefGoogle Scholar
  24. 24.
    P.-Y. Tang, L.-J. Han, A. Genç, Y.-M. He, X. Zhang, L. Zhang, J.R. Galán-Mascarós, J.R. Moranteb, J. Arbiol, Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy 22, 189–201 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Yao, N. Wang, W. Hu, S. Komarneni, Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction. Appl. Catal. B 233, 226–233 (2018)CrossRefGoogle Scholar
  26. 26.
    G. Zhu, C. Xi, M. Shen, C. Bao, J. Zhu, Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl. Mater. Inter. 6, 17208–17214 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Policicchio, R. Filosa, S. Abate, G. Desiderio, E. Colavita, Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. J. Porous Mater. 24, 905–922 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Yang, C. Zheng, P. Xiong, Y. Lia, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuel 1, 2053–2060 (2017)CrossRefGoogle Scholar
  31. 31.
    M.S. Rahmanifara, H. Hesarib, A. Noorib, M.Y. Masoomib, A. Morsalib, M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta 275, 76–86 (2018)CrossRefGoogle Scholar
  32. 32.
    C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni-Co MOF for foldable all-solid-state supercapacitor with high specific energy. J. Mater. Chem. A (2019).  https://doi.org/10.1039/c8ta11948a Google Scholar
  33. 33.
    K. Chen, D. Xue, Colloidal paradigm in supercapattery electrode systems. Nanotechnology 29, 024003 (2018)CrossRefGoogle Scholar
  34. 34.
    N. Wang, C. Wang, L. He, Y. Wang, W. Hu, S. Komarneni, Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. Electrochim. Acta 298, 717–725 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyUniversity of Electronic Science & Technology of ChinaChengduPeople’s Republic of China
  2. 2.Materials Research Institute, Department of Ecosystem Science and Management, 204 Energy and the Environment LaboratoryThe Pennsylvania State UniversityState CollegeUSA

Personalised recommendations