Heteropolyacids supported on mesoporous AlSBA-15 as efficient catalysts for esterification of levulinic acid

  • Nishita Lucas
  • L. Gurrala
  • Anjali AthawaleEmail author


A comparative study of different heteropoly acids supported on mesoporous AlSBA-15 for the synthesis of ethyl levulinate has been undertaken for the first time. The catalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma-optical emission spectrometry, thermo gravimetric analysis, temperature programmed desorption of NH3 and N2 sorption studies. Insights into crucial parameters for the esterification reactions are also furnished. A distinct correlation was observed between acid density and conversion revealing that the distribution of acidic sites and their accessibility by the reactant moieties plays an important role in determining the overall activity. The effects of various reaction parameters were investigated to enhance the catalytic activity and yield of ethyl levulinate. Under the optimized conditions, levulinic acid conversion of 87.4 mol% and ethyl levulinate selectivity of 100% could be obtained with silicotungstic acid supported on AlSBA-15.


Levulinic acid Ethyl levulinate Fuel additive Comparative study Heteropoly acid-AlSBA-15 



Nishita Lucas acknowledges University Grant Commission, India for providing D.S. Kothari postdoctoral fellowship. Authors also acknowledge National Chemical Laboratory, Pune for SEM and TEM analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2019_734_MOESM1_ESM.doc (234 kb)
Supplementary material 1 (DOC 234 KB)


  1. 1.
    P. Gallezot, Green Chem. 9, 295–302 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411–2502 (2007)CrossRefGoogle Scholar
  3. 3.
    J.J. Bozell, G.R. Petersen, Green Chem. 12, 539–554 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Werpy, G. Petersen, Top value added chemicals from biomass: Vol. 1-results of screening for potential candidates from sugars and synthesis gas, Report No. NREL/TP-510-35523; National Renewable Energy Laboratory, Golden, CO (2004).
  5. 5.
    R.E. Holmen, US patent 3471554 (1969)Google Scholar
  6. 6.
    C. Fumagalli, Succinic acid and succinic anhydride, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., ed. by J. Kroschwitz, M. Home-Grant (John Wiley and Sons, New York, 1997), p. 1074Google Scholar
  7. 7.
    A.P. Dunlop, J.W. Madden, US patent 2786852 (1957)Google Scholar
  8. 8.
    J.J. Bozell, L. Moens, D.C. Elliott, Y. Wang, G.G. Neuenscwander, S.W. Fitzpatrick, R.J. Bilski, J.L. Jarnefeld, Resour. Conserv. Recycl. 28, 227–239 (2000)CrossRefGoogle Scholar
  9. 9.
    P.D. Bloom, US Patent 20100216915 (2010)Google Scholar
  10. 10.
    K.Y. Nandiwale, S.K. Sonar, P.S. Niphadkar, P.N. Joshi, S.S. Deshpande, V.S. Patil, V.V. Bokade, Appl. Catal. A Gen 460–461, 90–98 (2013)CrossRefGoogle Scholar
  11. 11.
    H.J. Bart, J. Reidetschläger, K. Schatka, A. Lehmann, Ind. Eng. Chem. Res. 33(1), 21–25 (1994)CrossRefGoogle Scholar
  12. 12.
    J. Lilja, D.Y. Murzin, T. Salmi, J. Aumo, P. Maäki-Arvela, M. Sundell, J. Mol. Catal. A Chem. 182–183, 555–563 (2002)CrossRefGoogle Scholar
  13. 13.
    C. Chang, G. Zu, X. Jiang, Bioresour. Technol. 121, 93–99 (2012)CrossRefGoogle Scholar
  14. 14.
    D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J.A. Mota, V.T. Da Silva, Appl. Catal. A Gen 425–426, 199–204 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Kuwahara, W. Kaburagi, K. Nemoto, T. Fujitani, Appl. Catal. A Gen. 476, 186–196 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Kuwahara, T. Fujitani, H. Yamashita, Catal. Today 237, 18–28 (2014)CrossRefGoogle Scholar
  17. 17.
    B.L. Oliveira, V.T. Da Silva, Catal. Today 234, 257–263 (2014)CrossRefGoogle Scholar
  18. 18.
    J.A. Melero, G. Morales, J. Iglesias, M. Paniagua, B. Hernandez, S. Penedo, Appl. Catal. A. Gen. 466, 116–122 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Ogino, Y. Suzuki, S.R. Mukai, Catal. Today 314, 62–69 (2018)CrossRefGoogle Scholar
  20. 20.
    F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Chem. Eng. Sci. 124, 52–60 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Ciptonugroho, M.G. Al-Shaal, J.B. Mensah, R. Palkovits, J. Catal. 340, 17–29 (2016)CrossRefGoogle Scholar
  22. 22.
    S.S. Enumula, V.R.B. Gurram, R.R. Chada, D.R. Burri, S.R.R. Kamaraju, J. Mol. Catal. A Chem. 426, 30–38 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Pasquale, P. Vázquez, G. Romanelli, G. Baronetti, Catal. Commun. 18, 115–120 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Dharne, V.V. Bokade, J. Nat. Gas. Chem. 20, 18–24 (2011)CrossRefGoogle Scholar
  25. 25.
    K.Y. Nandiwale, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, J. Chem. Technol. Biotechnol. 89(10), 1507–1515 (2014)CrossRefGoogle Scholar
  26. 26.
    C.R. Patil, P.S. Niphadkar, V.V. Bokade, P.N. Joshi, Catal. Commun. 43, 188–191 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Neves, S. Lima, M. Pillinger, S.M. Rocha, J. Rocha, A.A. Valente, Catal. Today 218–219, 76–84 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Peng, X. Gao, K. Chen, Fuel 160, 123–131 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Peng, L. Lin, J. Zhang, J. Shi, S. Liu, Appl. Catal. A Gen 397, 259–265 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Saravanamurugan, A. Riisager, Catal. Commun. 17, 71–75 (2012)CrossRefGoogle Scholar
  31. 31.
    A.S. Amarasekara, B. Wiredu, Bioenergy Res. 7(4), 1237–1243 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)CrossRefGoogle Scholar
  33. 33.
    N. Lucas, G. Kokate, A. Nagpure, S. Chilukuri, Microporous Mesoporous Mater. 181, 38–46 (2013)CrossRefGoogle Scholar
  34. 34.
    B.M. Devasy, S.B. Halligudi, J. Catal. 236, 313–323 (2005)CrossRefGoogle Scholar
  35. 35.
    D.P. Sawant, A. Vinu, S.P. Mirajkar, F. Lefebre, K. Ariga, S. Anandan, T. .Mori, C. Nishimura, S.B. Halligudi, J. Mol. Catal. A. Chem. 271, 46–56 (2007)CrossRefGoogle Scholar
  36. 36.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  37. 37.
    C. Nie, L. Huang, D. Zhao, Q. Li, Catal. Lett. 71, 117–125 (2001)CrossRefGoogle Scholar
  38. 38.
    C.R. Patil, C.V. Rode, Fuels 217, 38–44 (2018)CrossRefGoogle Scholar
  39. 39.
    M.M. Araujo, L.K.R. Silva, J.C. Sczancoski, M.O. Orlandi, Appl. Surf. Sci. 389, 1137–1147 (2016)CrossRefGoogle Scholar
  40. 40.
    N. Lingaiah, K.M. Reddy, N. Sheshubabu, K.N. Rao, I. Suryanarayana, P.S. Saiprasad, Catal. Commun. 7, 245–250 (2006)CrossRefGoogle Scholar
  41. 41.
    G.V. Shanbhag, T. Joseph, S.B. Halligudi, J. Catal. 250, 274–282 (2007)CrossRefGoogle Scholar
  42. 42.
    D. Varasli, T. Dogu, G. Dogu, Chem. Eng. Sci. 62, 5349–5352 (2007)CrossRefGoogle Scholar
  43. 43.
    W.M. Meier, D.H. Olson, Atlas of zeolite structure, 3rd edn. On behalf of Structure Commission of the International Zeolites Association (1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryS. P. Pune UniversityPuneIndia
  2. 2.Catalysis and Inorganic Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations