Advertisement

Ultralight and thermal insulation carbon foam/SiO2 aerogel composites

  • Yang Liu
  • Zhaofeng ChenEmail author
  • Junxiong Zhang
  • Sufen Ai
  • Hao Tang
Article
  • 1 Downloads

Abstract

In this study, carbon foam (CF) and SiO2 aerogel composite were prepared by the sol–gel method under a circumstance of the atmospheric drying process. The Pyrolysis mechanism of carbon foam was investigated through thermal gravimetric analysis and Fourier transform infrared spectroscopy (FTIR). Carbon foam having ultralight properties with a density of 5.44 kg/m3, functions as a skeleton to support the composite. The maximum compressive stress measured for CF/SiO2 aerogel composite was about 1.0 MPa. At room temperature, the measured thermal conductivities of the CF and CF/SiO2 aerogel composite were 0.035 W/m K and 0.024 W/m K, while at 300 °C, it was reported to be 0.120 W/m K and 0.057 W/m K. Aerogel filled in carbon foam cells have significantly reduced the gaseous thermal conductivity of the prepared composite.

Keywords

Carbon foam SiO2 aerogel Composite Thermal conductivity 

Notes

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (Grant No. 51772151) and Jiangsu R&D project (Grant No. BE2017054). This work was also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    N. Gallego, J. Klett, Carbon 41(7), 1461–1466 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Chen, G. He, H. Hu, S. Jin, Y. Zhou, Y. He, S. He, F. Zhao, H. Hou, Energy Environ. Sci. 6(8), 2435–2439 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Z. Chen, S. Yu, M. Saeed, T. Xu, W. Wang, Y. Pan, J. Eur. Ceram. Soc. 37(1), 53–59 (2017)CrossRefGoogle Scholar
  4. 4.
    N. Ohta, Y. Nishi, T. Morishita, Y. Ieko, A. Ito, M. Inagaki, N. Carbon Mater. 23(3), 216–220 (2008)CrossRefGoogle Scholar
  5. 5.
    S. He, W. Chen, J. Power Sources 262(9), 391–400 (2014)Google Scholar
  6. 6.
    W. Alshaer, S. Nada, M. Rady, E. Barrio, A. Sommier, Int. J. Therm. Sci 89, 79–86 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, Y. Zhou, C. Li, S. Chen, L. Liu, S. Liu, H. Yao, Carbon 95, 388–395 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4(4), 1113–1132 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, J. Power Sources Compos. 196(16), 6729–6734 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Ma, Z. Nie, X. Xi, B. Chen, Y. Chen, J. Porous Mater. 20(3), 557–562 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Ge, Z. Shen, W. Chi, H. Liu, Carbon 45(1), 141–145 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Bao, L. Zhan, C. Wang, Y. Wang, W. Qiao, L. Ling, Mater. Lett. 65(19–20), 3154–3156 (2011)CrossRefGoogle Scholar
  13. 13.
    T. Li, C. Wang, B. An, H. Wang, Carbon 43(9), 2030–2032 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Yu, Z. Chen, Y. Wang, R. Luo, Y. Pan, J. Porous Mater. 25(2), 527–536 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Laskowski, B. Milow, L. Ratke, J. Non-Cryst. Solids 441(1), 42–48 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Hüsing, U. Schubert, Angew. Chem., Int. Ed. 37(1-2), 22–45 (1998)CrossRefGoogle Scholar
  17. 17.
    X. Gao, H. Lv, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia, RSC Adv. 6(109), 107278–107285 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Reim, W.K.örner,J. Manara, S. Korder, M. Arduini-Schuster, H. Ebert, J. Fricke, Sol. Energy 79(2), 131–139 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Feng, D. Le, S. Nguyen, V. Nien, D. Jewell, H. Duong, Colloids Surf. A 506, 298–305 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Dawidziuk, F. Carrasco-Marín, C. Moreno-Castilla, Carbon 47(11), 2679–2687 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Xin, W. Li, W. Fang, X. He, L. Zhao, H. Chen, W. Zhang, Z. Sun, J. Nanopart. Res. 19(12), 386 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Liu, T. Li, Y. Shi, X. Zhao, J. Mater. Eng. Perform. 24(10), 4054 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Zeng, A. Hunt, R. Greif, J. Heat Transfer 117, 758–761 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Beijing SpacecraftsChina Academy of Space TechnologyBeijingPeople’s Republic of China

Personalised recommendations