Evaluation of silanization of Fe-silicalite-1, Na-Fe-ZSM-5 and solvent concentration on the oxidation of n-octane to C8 oxygenates

  • Mduduzi N. Cele
  • Holger B. FriedrichEmail author
  • Muhammad D. Bala


The synthesis of Na-Fe-Silicalite-1(80), Na-Fe-Silicalite-1(128), Na-Fe-ZSM-5(78) and Na-Fe-ZSM-5(126) was conducted using the isomorphic substitution method. These catalysts were further modified by the process of silanisation to yield Na-Fe-Silicalite-1(80:Sil), Na-Fe-Silicalite-1(128:Sil), Na-Fe-ZSM-5(78:Sil), and Na-Fe-ZSM-5(126:Sil) (The numbers in brackets represent the Si/Fe molar ratio and Sil represents silanization). The XRD analyses show that only the ZSM-5 phase was present in all the catalysts. These catalysts were tested in the oxidation of n-octane in MeCN using H2O2 as an oxidant. It was found that the selectivity to terminal products increased with increasing the volume of MeCN. Thus, e.g. terminal C8 selectivities could be improved from 17 to 28% using the Na-Fe-Silicalite-1(80) catalyst by increasing the volume of solvent. Furthermore, the Na-Fe-Silicalite-1(80), Na-Fe-Silicalite-1(80:Sil), Na-Fe-Silicalite-1(128) and Na-Fe-Silicalite-1(128:Sil) show terminal selectivities of 28.1, 14.3, 17.6 and 12.3% respectively. In contrast Na-Fe-ZSM-5(78), Na-Fe-ZSM-5(126), Na-Fe-ZSM-5(78:Sil), and Na-Fe-ZSM-5(126:Sil) show terminal selectivities of 24.5, 25.7, 21.3 and 27.3% respectively. Results also showed that the Na-Fe-ZSM-5 catalyst has better selectivity to terminal products than Na-Fe-Silicalite-1.


N-Octane Oxidation Iron Zeolite Silanisation Octanol Octanone Octanal 



We thank c*change (Grant No. PAR06.2), the NRF, THRIP (Grant No. TP1208035643), Clariant and the University of KwaZulu-Natal for support.

Supplementary material

10934_2019_731_MOESM1_ESM.docx (170 kb)
Supplementary material 1 (DOCX 170 KB)


  1. 1.
    G. Prieto, P. Concepción, A. Martínez, E. Mendoza, J. Catal. 280, 274–288 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Pillay, M.R. Mathebula, H.B. Friedrich, Appl. Catal. A 361, 57–64 (2009)CrossRefGoogle Scholar
  3. 3.
    L. Meng, X. Zhu, W. Wannapakdee, R. Pestman, M. Goesten, L. Gao, A. van Hoof, E. Hensen, J. Catal. 361, 135–142 (2018)CrossRefGoogle Scholar
  4. 4.
    O. Myaa, M. Bitaa, I. Louafia, A. Djouadib, MethodsX 5, 277–282 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Ban, S. Kondoh, Y. Ohya, Y. Takahashi, Phys. Chem. Chem. Phys. 1, 5745–5752 (1999)CrossRefGoogle Scholar
  6. 6.
    F. Bauer, W.H. Chen, E. Bilz, A. Freyer, V. Sauerland, S.B. Liu, J. Catal. 251, 258–270 (2007)CrossRefGoogle Scholar
  7. 7.
    C.T. O’Connor, K.P. Möller, H. Manstein, CATTECH 5, 172–182 (2001)CrossRefGoogle Scholar
  8. 8.
    Y.S. Bhat, J. Das, K.V. Rao, A.B. Halgeri, J. Catal. 159, 368–374 (1996)CrossRefGoogle Scholar
  9. 9.
    J.H. Kim, A. Ishida, M. Okajima, M. Niwa, J. Catal. 161, 387–392 (1996)CrossRefGoogle Scholar
  10. 10.
    H.P. Röger, M. Krämer, K.P. Möller, C. T. O’Connor, Micropor. Mesopor. Mater. 21, 607–614 (1998)CrossRefGoogle Scholar
  11. 11.
    Y.S. Bhat, J. Das, A.B. Halgeri, Appl. Catal. A 122, 161–168 (1995)CrossRefGoogle Scholar
  12. 12.
    J. Cejka, N. Filková, B. Wichterlová, G. Eder-Mirth, J.A. Lercher, Zeolites 17, 265–271 (1996)CrossRefGoogle Scholar
  13. 13.
    Z.R. Zhu, Z.K. Xie, Q.L. Chen, D.J. Kong, W. Li, W.M. Yang, C. Li, Micropor. Mesopor. Mater. 101, 169–175 (2007)CrossRefGoogle Scholar
  14. 14.
    T. Hui, W. Jun, R. Xiaoqian, C.H. Demin. Kinetics and reactors. Chin. J. Chem. Eng. 19, 292–298 (2011)CrossRefGoogle Scholar
  15. 15.
    V. Peneau, G. Shaw, R.D. Armstrong, R.L. Jenkins, N. Dimitratos, S.H. Taylor, H.W. Zanthoff, S. Peitz, G. Stochniol, G.J. Hutchings, Catal. Sci. Technol 6, 7521–7531 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Xu, R.D. Armstrong, G. Shaw, N.F. Dummer, S.J. Freakley, S.H. Taylor, G.J. Hutchings, Catal. Today 270, 93–100 (2016)CrossRefGoogle Scholar
  17. 17.
    M.N. Cele, H.B. Friedrich, M.D. Bala, Catal. Commun. 57, 99–102 (2014)CrossRefGoogle Scholar
  18. 18.
    M.N. Cele, H.B. Friedrich, M.D. Bala, J Mol. Catal. 427, 39–44 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Bauer, C.W. Chen, H. Ernst, S.J. Huang, A. Freyer, S.B. Liu, Micropor. Mesopor. Mater. 72, 81–89 (2004)CrossRefGoogle Scholar
  20. 20.
    P. Fejes, I. Kiricsi, K. Lazar, I. Marsi, A. Rockenbauer, L. Korecz, J.B. Nagy, R. Aiello, F. Testa, Appl. Catal. A 242, 247–266 (2003)CrossRefGoogle Scholar
  21. 21.
    P. Fejes, J.B. Nagy, J. Halasz, A. Oszko, Appl. Catal. A 175, 89–104 (1998)CrossRefGoogle Scholar
  22. 22.
    V.D. Gaag, ZSM-5 Type Zeolites: Synthesis and Use in Gas Phase Reaction with Ammonia (Technische Universiteit, Delft, 1987)Google Scholar
  23. 23.
    B. Michalkiewicz, Appl. Catal. A 277, 147–153 (2004)CrossRefGoogle Scholar
  24. 24.
    R.Q. Long, R.T. Yang, J. Mol. Catal. 194, 80–90 (2000)CrossRefGoogle Scholar
  25. 25.
    A.S. Axon, J. Klinowski, Appl. Catal. A 81, 27–34 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Physical ScienceUniversity of MpumalangaMbombelaSouth Africa
  2. 2.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations