Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite

  • Indu Kaushal
  • Ashok K. SharmaEmail author
  • Priya Saharan
  • Kishor Kumar Sadasivuni
  • Surender Duhan


MnO2 doped polyaniline (PANI) grafted on 3D CNTs/graphene was fabricated using basic in situ redox deposition. The HRTEM and FESEM studies validate that MnO2 doped polyaniline (PANI) can be efficiently coated over the surface of CNTs/graphene. The incorporation of MnO2 in polyaniline well depicted by elemental mapping. The electrochemical studies showed that maximum specific capacitance of 1360 Fg−1 at 5 mV s−1 scan rate was achieved for the MnO2 doped PANI/CNTs/graphene composite, which was nearly 30% higher than 1160 Fg−1 of MnO2 doped PANI /CNTs and 50% more than the 600 Fg−1 of MnO2 doped PANI composite. Moreover, this composite provided a good cycling stability of 82% after 5000 cycles with mentionable capacitance retention. The incredible electrochemical performance is accredited mainly to the porous hierarchical architecture, which consisted of interconnected MnO2 doped PANI uniformly coated over the CNTs/graphene carbon framework.


MnO2 Graphene Supercapacitor CNTs PANI Specific capacitance Composite 



Ashok K. Sharma and Indu Kaushal are thankful to University Grants Commission (F. No. 42–345/2013 (SR)), New Delhi, India for providing financial assistance under the scheme of support for major research project.


  1. 1.
    D.-H. Yeom, J. Choi, W.J. Byun, J.K. Lee, Manganese oxides nanocrystals supported on mesoporous carbon microspheres for energy storage application. Korean J. Chem. Eng. 33(10), 3029–3034 (2016)Google Scholar
  2. 2.
    A. Arslan, E. Hur, Electrochemical storage properties of polyaniline-, poly (N-methylaniline)-, and poly (N-ethylaniline)-coated pencil graphite electrodes. Chem. Pap. 68(4), 504–515 (2014)Google Scholar
  3. 3.
    M. Khan, G. Brunklaus, S. Ahmad, Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arab. J. Chem. 10(5), 708–714 (2017)Google Scholar
  4. 4.
    J. Wang, X. Li, X. Du, J. Wang, H. Ma, X. Jing, Polypyrrole composites with carbon materials for supercapacitors. Chem. Pap. 71(2), 293–316 (2017)Google Scholar
  5. 5.
    S. Grover, S. Shekhar, R.K. Sharma, G. Singh, Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim. Acta 116, 137–145 (2014)Google Scholar
  6. 6.
    A.K. Sharma, P. Bhardwaj, S.K. Dhawan, Y. Sharma, Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. 6(5), 414–420 (2015)Google Scholar
  7. 7.
    A.K. Sharma, Y. Sharma, Pseudocapacitive studies of polyaniline-carbon nanotube composites as electrode material for supercapacitor. Anal. Lett. 45(14), 2075–2085 (2012)Google Scholar
  8. 8.
    D. Liu, H. Wang, P. Du, W. Wei, Q. Wang, P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259, 161–169 (2018)Google Scholar
  9. 9.
    A.N. Golikanda, M. Bagherzadehc, Z. Shirazi, Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim. Acta 247, 116–124 (2017)Google Scholar
  10. 10.
    J. Shen, C. Yang, X. Li, G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interface 5, 8467–8476 (2013)Google Scholar
  11. 11.
    Y. Liu, N. Wang, M. Yao, C. Yang, W. Hu, S. Komarneni, Porous Ag-doped MnO2 thin films for supercapacitor electrodes. J. Porous Mater. 24(6), 1717–1723 (2017)Google Scholar
  12. 12.
    F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci.: Mater. Electron. 24(6), 1913–1920 (2013)Google Scholar
  13. 13.
    A. Ehsani, A.A. Heidari, H.M. Shiri, Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies. Chem. Rec. 9(18), 15350–15363((2017)Google Scholar
  14. 14.
    J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces, 10(13), 10851–10859 (2018)Google Scholar
  15. 15.
    Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interface 5(8), 3408–3416 (2013)Google Scholar
  16. 16.
    Z. Lei, F. Shi, L. Lu, Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interface 4(2), 1058–1064 (2012)Google Scholar
  17. 17.
    H. Jiang, Y. Dai, Y. Hu, W. Chen, C. Li, Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors. ACS Sustain. Chem. Eng. 2(1), 70–74 (2013)Google Scholar
  18. 18.
    X. Huang, M. Kim, H. Suh, I. Kim, Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean J. Chem. Eng. 33(7), 2228–2234 (2015)Google Scholar
  19. 19.
    A. Thambidurai, J.K. Lourdusamy, J.V. John, S. Ganesan, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation. Korean J. Chem. Eng. 31(2), 268–275 (2014)Google Scholar
  20. 20.
    T. Hao, W. Wang, D. Yu, Flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J. Electron. Mater. 47(7), 4108–4115 (2018)Google Scholar
  21. 21.
    K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C. 114(17), 8062–8067 (2010)Google Scholar
  22. 22.
    K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010)Google Scholar
  23. 23.
    S.I.A. Razak, A.L. Ahmad, S.H.S. Zein, Polymerisation of protonic polyaniline/multi-walled carbon nanotubes-manganese dioxide nanocomposites. J. Phys. Sci. 20(1), 27–34 (2009)Google Scholar
  24. 24.
    W. Wu, Y. Li, L. Yang, Y. Ma, X. Yan, Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synth. Met. 193, 48–57 (2014)Google Scholar
  25. 25.
    X. Du, M. Xiao, Y. Meng, Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J. 40(7), 1489–1493 (2004)Google Scholar
  26. 26.
    H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, Y. Ding, Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater. Sci. Eng.: B. 178(5), 293–298 (2013)Google Scholar
  27. 27.
    J. Yang, X. Wang, X. Wang, R. Jia, J. Huang, Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J. Phys. Chem. Solid. 71(4), 448–452 (2010)Google Scholar
  28. 28.
    Z.J. Han, D.H. Seo, S. Yick, J.H. Chen, K.K. Ostrikov, MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Mater. 6(10), e140 (2014)Google Scholar
  29. 29.
    P.K. Upadhyay, A. Ahmad, Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polym. Sci. 28(2), 191–197 (2010)Google Scholar
  30. 30.
    L. Lamaita, M.A. Peluso, J.E. Sambeth, H.J. Thomas, Synthesis and characterization of manganese oxides employed in VOCs abatement. Appl. Catal. B: Environ. 61(1), 114–119 (2005)Google Scholar
  31. 31.
    Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48(8), 1406–1412 (2012)Google Scholar
  32. 32.
    M. Villalobos, B. Lanson, A. Manceau, B. Toner, G. Sposito, Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am. Mineral. 91(4), 489–502 (2006)Google Scholar
  33. 33.
    H. Zhu, J. Luo, H. Yang, J. Liang, G. Rao, J. Li, Z. Du, Birnessite-type MnO2 nanowalls and their magnetic properties. J. Phys. Chem. C. 112(44), 17089–17094 (2008)Google Scholar
  34. 34.
    F. Yang, M. Xu, S.-J. Bao, Q.-Q. Sun, MnO2-assisted fabrication of PANI/MWCNT composite and its application as a supercapacitor. RSC Adv. 4(63), 33569–33573 (2014)Google Scholar
  35. 35.
    F. Meng, X. Yan, Y. Zhu, P. Si, Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res. lett 8(1), 1–8 (2013)Google Scholar
  36. 36.
    A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuel 1, 2053–2060 (2017)Google Scholar
  37. 37.
    Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent AC line filtering and rate capability via improved interfacial impedance. ACS Nano 9, 7248–7255 (2015)Google Scholar
  38. 38.
    A. Eftekhari, M. Mohamedi, Tailoring pseudocapactive materials from a mechanistic perspective. Energy Storage Mater. 6, 211–229 (2017)Google Scholar
  39. 39.
    J. Song, M.Z. Bazant, Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes. J. Electrochem. Soc. 160, A15 (2013)Google Scholar
  40. 40.
    A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6, 2866 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Indu Kaushal
    • 1
  • Ashok K. Sharma
    • 1
    Email author
  • Priya Saharan
    • 1
  • Kishor Kumar Sadasivuni
    • 2
  • Surender Duhan
    • 1
  1. 1.Thin Film Laboratory, Department of Materials Science & NanotechnologyDeenbandhu Chhotu Ram University of Science & TechnologyMurthalIndia
  2. 2.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations