Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite
- 22 Downloads
Abstract
MnO2 doped polyaniline (PANI) grafted on 3D CNTs/graphene was fabricated using basic in situ redox deposition. The HRTEM and FESEM studies validate that MnO2 doped polyaniline (PANI) can be efficiently coated over the surface of CNTs/graphene. The incorporation of MnO2 in polyaniline well depicted by elemental mapping. The electrochemical studies showed that maximum specific capacitance of 1360 Fg−1 at 5 mV s−1 scan rate was achieved for the MnO2 doped PANI/CNTs/graphene composite, which was nearly 30% higher than 1160 Fg−1 of MnO2 doped PANI /CNTs and 50% more than the 600 Fg−1 of MnO2 doped PANI composite. Moreover, this composite provided a good cycling stability of 82% after 5000 cycles with mentionable capacitance retention. The incredible electrochemical performance is accredited mainly to the porous hierarchical architecture, which consisted of interconnected MnO2 doped PANI uniformly coated over the CNTs/graphene carbon framework.
Keywords
MnO2 Graphene Supercapacitor CNTs PANI Specific capacitance CompositeNotes
Acknowledgements
Ashok K. Sharma and Indu Kaushal are thankful to University Grants Commission (F. No. 42–345/2013 (SR)), New Delhi, India for providing financial assistance under the scheme of support for major research project.
References
- 1.D.-H. Yeom, J. Choi, W.J. Byun, J.K. Lee, Manganese oxides nanocrystals supported on mesoporous carbon microspheres for energy storage application. Korean J. Chem. Eng. 33(10), 3029–3034 (2016)Google Scholar
- 2.A. Arslan, E. Hur, Electrochemical storage properties of polyaniline-, poly (N-methylaniline)-, and poly (N-ethylaniline)-coated pencil graphite electrodes. Chem. Pap. 68(4), 504–515 (2014)Google Scholar
- 3.M. Khan, G. Brunklaus, S. Ahmad, Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arab. J. Chem. 10(5), 708–714 (2017)Google Scholar
- 4.J. Wang, X. Li, X. Du, J. Wang, H. Ma, X. Jing, Polypyrrole composites with carbon materials for supercapacitors. Chem. Pap. 71(2), 293–316 (2017)Google Scholar
- 5.S. Grover, S. Shekhar, R.K. Sharma, G. Singh, Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim. Acta 116, 137–145 (2014)Google Scholar
- 6.A.K. Sharma, P. Bhardwaj, S.K. Dhawan, Y. Sharma, Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. 6(5), 414–420 (2015)Google Scholar
- 7.A.K. Sharma, Y. Sharma, Pseudocapacitive studies of polyaniline-carbon nanotube composites as electrode material for supercapacitor. Anal. Lett. 45(14), 2075–2085 (2012)Google Scholar
- 8.D. Liu, H. Wang, P. Du, W. Wei, Q. Wang, P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259, 161–169 (2018)Google Scholar
- 9.A.N. Golikanda, M. Bagherzadehc, Z. Shirazi, Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim. Acta 247, 116–124 (2017)Google Scholar
- 10.J. Shen, C. Yang, X. Li, G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interface 5, 8467–8476 (2013)Google Scholar
- 11.Y. Liu, N. Wang, M. Yao, C. Yang, W. Hu, S. Komarneni, Porous Ag-doped MnO2 thin films for supercapacitor electrodes. J. Porous Mater. 24(6), 1717–1723 (2017)Google Scholar
- 12.F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci.: Mater. Electron. 24(6), 1913–1920 (2013)Google Scholar
- 13.A. Ehsani, A.A. Heidari, H.M. Shiri, Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies. Chem. Rec. 9(18), 15350–15363((2017)Google Scholar
- 14.J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces, 10(13), 10851–10859 (2018)Google Scholar
- 15.Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interface 5(8), 3408–3416 (2013)Google Scholar
- 16.Z. Lei, F. Shi, L. Lu, Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interface 4(2), 1058–1064 (2012)Google Scholar
- 17.H. Jiang, Y. Dai, Y. Hu, W. Chen, C. Li, Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors. ACS Sustain. Chem. Eng. 2(1), 70–74 (2013)Google Scholar
- 18.X. Huang, M. Kim, H. Suh, I. Kim, Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean J. Chem. Eng. 33(7), 2228–2234 (2015)Google Scholar
- 19.A. Thambidurai, J.K. Lourdusamy, J.V. John, S. Ganesan, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation. Korean J. Chem. Eng. 31(2), 268–275 (2014)Google Scholar
- 20.T. Hao, W. Wang, D. Yu, Flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J. Electron. Mater. 47(7), 4108–4115 (2018)Google Scholar
- 21.K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C. 114(17), 8062–8067 (2010)Google Scholar
- 22.K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010)Google Scholar
- 23.S.I.A. Razak, A.L. Ahmad, S.H.S. Zein, Polymerisation of protonic polyaniline/multi-walled carbon nanotubes-manganese dioxide nanocomposites. J. Phys. Sci. 20(1), 27–34 (2009)Google Scholar
- 24.W. Wu, Y. Li, L. Yang, Y. Ma, X. Yan, Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synth. Met. 193, 48–57 (2014)Google Scholar
- 25.X. Du, M. Xiao, Y. Meng, Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J. 40(7), 1489–1493 (2004)Google Scholar
- 26.H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, Y. Ding, Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater. Sci. Eng.: B. 178(5), 293–298 (2013)Google Scholar
- 27.J. Yang, X. Wang, X. Wang, R. Jia, J. Huang, Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J. Phys. Chem. Solid. 71(4), 448–452 (2010)Google Scholar
- 28.Z.J. Han, D.H. Seo, S. Yick, J.H. Chen, K.K. Ostrikov, MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Mater. 6(10), e140 (2014)Google Scholar
- 29.P.K. Upadhyay, A. Ahmad, Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polym. Sci. 28(2), 191–197 (2010)Google Scholar
- 30.L. Lamaita, M.A. Peluso, J.E. Sambeth, H.J. Thomas, Synthesis and characterization of manganese oxides employed in VOCs abatement. Appl. Catal. B: Environ. 61(1), 114–119 (2005)Google Scholar
- 31.Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48(8), 1406–1412 (2012)Google Scholar
- 32.M. Villalobos, B. Lanson, A. Manceau, B. Toner, G. Sposito, Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am. Mineral. 91(4), 489–502 (2006)Google Scholar
- 33.H. Zhu, J. Luo, H. Yang, J. Liang, G. Rao, J. Li, Z. Du, Birnessite-type MnO2 nanowalls and their magnetic properties. J. Phys. Chem. C. 112(44), 17089–17094 (2008)Google Scholar
- 34.F. Yang, M. Xu, S.-J. Bao, Q.-Q. Sun, MnO2-assisted fabrication of PANI/MWCNT composite and its application as a supercapacitor. RSC Adv. 4(63), 33569–33573 (2014)Google Scholar
- 35.F. Meng, X. Yan, Y. Zhu, P. Si, Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res. lett 8(1), 1–8 (2013)Google Scholar
- 36.A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuel 1, 2053–2060 (2017)Google Scholar
- 37.Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent AC line filtering and rate capability via improved interfacial impedance. ACS Nano 9, 7248–7255 (2015)Google Scholar
- 38.A. Eftekhari, M. Mohamedi, Tailoring pseudocapactive materials from a mechanistic perspective. Energy Storage Mater. 6, 211–229 (2017)Google Scholar
- 39.J. Song, M.Z. Bazant, Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes. J. Electrochem. Soc. 160, A15 (2013)Google Scholar
- 40.A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6, 2866 (2018)Google Scholar