Synthesis of Mo-MCM-48 and their isomerization performances of n-heptane

  • Yingjun Wang
  • Xiuli Dong
  • Yanhong Cui
  • Shoutao Ma
  • Yanhua Suo
  • Wei ZhangEmail author


A series of Mo-MCM-48 molecular sieves were prepared by in-situ doping method and used as the catalyst for isomerization of n-heptane. The samples were characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, Nitrogen adsorption desorption isotherms (N2 adsorption–desorption), NH3 temperature programmed desorption (NH3-TPD), and Fourier Transform infrared spectroscopy (FT-IR). The results showed that Mo-MCM-48 samples modified by Mo species still had the typical cubic mesoporous structure of MCM-48. The results of n-heptane isomerization showed that when the doping amount of Mo species was 0.02, the reaction temperature was 250 °C, and the reaction time was 150 min, the conversion of n-heptane and the selectivity of isoheptane of Mo-MCM-48 were up to 36.71% and 52.41%, respectively. There were no obvious decline of the catalytic activity of Mo-MCM-48 after reaction for 190 min.


Mesoporous molecular sieve Mo-MCM-48 n-Heptane Isomerization 



This work was supported by the Support Plan for Outstanding Scientific Research Talents of Provincial Advantageous and Characteristic Disciplines of Chemical Engineering and Technology of Northeast Petroleum University, the Cultivation Fund of Northeast Petroleum University [Grant Number 2017PYYL-03], the Daqing Science and Technology Plan Projects [Grant Number szdfy-2015-04], and the College Students’ innovative Entrepreneurial Training Plan Projects of Hei Longjiang Province [grant number 201710220030].


  1. 1.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  2. 2.
    K. Schumacher, M. Grün, K.K. Unger, Microporous Mesoporous Mater. 27, 201 (1999)CrossRefGoogle Scholar
  3. 3.
    K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark, K.K. Unger, Langmuir. 16, 4648 (2000)CrossRefGoogle Scholar
  4. 4.
    U.S. Taralkar, P. Kalita, R. Kumar, P.N. Joshi, Appl. Catal. A 358, 88 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Longloilert, T. Chaisuwan, A. Luengnaruemitchai, S. Wongkasemjit, J. Sol-Gel. Sci. Technol. 61, 133 (2012)CrossRefGoogle Scholar
  6. 6.
    S.C. Laha, R. Gläser, Microporous Mesoporous Mater. 99, 159 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Wang, W. Qian, J. Chen, W. Yong, X. Xiaoying, W. Jun, K. Yan, RSC Adv. 4, 50832 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Shao, L. Wang, J. Zhang, M. Anpo, J. Phys. Chem. B. 109, 20835 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Ding, A. Kong, H. Zhang, H. Shen, Z. Sun, S.D. Huang, Y. Shan, Appl. Catal. A. 455, 58 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Chatterjee, F.Y. Zhao, Y. Ikushima, Appl. Catal. A 262, 93 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Wang, W. Zhang, Y. Suo, Y. Wang, J. Porous Mater. 25, 1317 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Tanaka, K. Miyahara, K.I. Tanaka, J. Mol. Catal. 15, 133 (1982)CrossRefGoogle Scholar
  13. 13.
    K. Chen, S. Xie, A.T. Bell, E. Iglesia, J. Catal. 198, 232 (2001)CrossRefGoogle Scholar
  14. 14.
    X. Wang, C. Li, Y. Wang, T.-X. Cai, Today. 93, 135 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Matsuda, A. Hanai, F. Uchijima, H. Sakagami, N. Takahashi, Microporous Mesoporous Mater. 51, 155 (2002)CrossRefGoogle Scholar
  16. 16.
    P. Wehrer, C. Bigey, L. Hilaire, Appl. Catal. A. 243, 109 (2003)CrossRefGoogle Scholar
  17. 17.
    A. Doyle, B.K. Hodnett, Microporous Mesoporous Mater. 63, 53 (2003)CrossRefGoogle Scholar
  18. 18.
    A.S. Araujo, J. Therm. Anal. Calorim. 79, 493 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Danumah, S. Vaudreuil, L. Bonneviot, M. Bousmina, S. Giasson, S. Kaliaguine, Microporous Mesoporous Mater. 44, 241 (2001)CrossRefGoogle Scholar
  20. 20.
    H. Kosslick, G. Lischke, H. Landmesser, B. Parlitz, W. Storek, R. Fricke, J. Catal. 176, 102 (1998)CrossRefGoogle Scholar
  21. 21.
    L. Wang, L. Wang, J. Zhang, J. Mater. Sci. 44, 6512 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Hua, S. Chen, G. Yuan, Y. Wang, J. Porous Mater. 18, 729 (2011)CrossRefGoogle Scholar
  23. 23.
    K.M. Parida, S.K. Dash, J. Hazard. Mater. 179, 642 (2010)CrossRefGoogle Scholar
  24. 24.
    W. Zhan, Y. Guo, Y. Wang, X. Liu, Y. Guo, Y. Wang, Z. Zhang, G. Lu, J Phys Chem B. 111, 12103 (2007)CrossRefGoogle Scholar
  25. 25.
    M.D. Alba, Z. Luan, J. Klinowski, J. Phys. Chem. 100, 2178 (1996)CrossRefGoogle Scholar
  26. 26.
    P. Selvam, S.E. Dapurkar, Appl. Catal. A. 276, 257 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Ono, Catal. Today 81, 3 (2003)CrossRefGoogle Scholar
  28. 28.
    T. Ressler, R.E. Jentoft, J. Wienold, M.M. Gunter, O. Timpe, J. Phys. Chem. B. 104, 6360 (2000)CrossRefGoogle Scholar
  29. 29.
    Z. Ji, H. Lv, X. Pan, X. Bao, J. Catal. 361, 94 (2018)CrossRefGoogle Scholar
  30. 30.
    X. Li, F. Zhou, A. Wang, L. Wang, Y. Hu, Ind. Eng. Chem. Res. 48, 2870 (2009)CrossRefGoogle Scholar
  31. 31.
    D. Wang, J.H. Lunsford, M.P. Rosynek, J. Catal. 169, 347 (1997)CrossRefGoogle Scholar
  32. 32.
    E. Kordouli, B. Pawelec, C. Kordulis, A. Lycourghiotis, J.L.G. Fierro, Appl Catal. B. 238, 147 (2018)CrossRefGoogle Scholar
  33. 33.
    N.A.A. Fatah, S. Triwahyono, A.A. Jalil, A. Ahmad, T.A.T. Abdullah, Appl. Catal. A. 516, 135 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Huang, Q. Huang, H. Xiao, M. Eic, Microporous Mesoporous Mater. 111, 404 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqingChina

Personalised recommendations