Advertisement

Huge enhancement in electrochemical performance of nano carbide-derived carbon obtained by simply room-temperature soaking treatment in HF and HNO3 mixed solution

  • Yu Gu
  • Kang Liu
  • Xuesha Zhang
  • Ruijun ZhangEmail author
Article
  • 31 Downloads

Abstract

Herein we propose a facile and effective method to improve the supercapacitive performance of nano titanium carbide derived carbon (TiC-CDC), which is realized by simply soaking the TiC-CDC sample in the mixed acid solution made by a combination of HF and HNO3 for a designated duration at room temperature. After the acid-soaking, there occurs no significant change in the CDC microstructure, and the specific surface area shows only a little rise (from 958 to 1011 m2 g− 1). However, the specific capacitance of the acid-soaked TiC-CDC increases dramatically from 83 to 304 F g− 1 at the scan rate of 1 A g− 1 in 6 M KOH aqueous electrolyte, showing a more than 3 times improvement in comparison to that of the pristine CDC sample, which is, to the best of our knowledge, among the highest values so far reported for the CDC carbon materials. In addition, the acid-soaked TiC-CDC also exhibits a good rate capability (188 F g− 1 @ 500 mV s− 1) and an excellent cycling stability (no evident performance degradation after 8000 consecutive cycles). The present work may suggest that the mixed acid-soaking treatment at room temperature will be promising for the enhancement of the electrochemical performance for porous carbons.

Keywords

Nano titanium carbide derived carbon Supercapacitive performance Mixed acid-soaking 

Notes

Acknowledgements

Project 51872253 supported by National Natural Science Foundation of China.

Supplementary material

10934_2019_724_MOESM1_ESM.doc (125 kb)
Supplementary material 1 (DOC 125 KB)

References

  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, H. Feng, X. Wu et al. Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy. 34, 4889–4899 (2009)CrossRefGoogle Scholar
  3. 3.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sust. Energ. Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  4. 4.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science. 321, 651–652 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Chen, J. Duan, M. Jaroniec, S. Qiao, Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. J. Mater. Chem. A. 1, 9409–9413 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Wang, M. Yao, P. Zhao, W. Hu, S. Komarneni, Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell. J. Mater. Chem. A. 5, 5838–5845 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Wang, H. Song, H. Ren, J. Chen, M. Yao, W. Huang, W. Hu, S. Komarneni, Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem. Eng. J. 358, 531–539 (2019)CrossRefGoogle Scholar
  8. 8.
    N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018)CrossRefGoogle Scholar
  9. 9.
    J.-Q. Zhang, P. Li, S.-Y. Huang, B. Wang, H.-M. Luo, One-step synthesis of nitrogen-doped porous carbon for high performance supercapacitors. J. Porous Mater. 24, 1363–1373 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources. 158, 765–772 (2006)CrossRefGoogle Scholar
  11. 11.
    G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16, 2288–2293 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Popovska, M. Kormann, Processing of porous carbon with tunable pore structure by the carbide-derived carbon method. JOM. 62, 44–49 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Yan, J. Xu, C. Wu, Y. Gu, X. Zhang, R. Zhang, High-power supercapacitors based on hierarchical Porous nanometer-sized silicon carbide-derived carbon. Electrochim. Acta 189, 16–21 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, V. Presser et al., High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. J. Power Sources. 201, 368–375 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Xu, R. Zhang, J. Wang et al., Effective control of the microstructure of carbide-derived carbon by ball-milling the carbide precursor. Carbon. 52, 499–508 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Dash, J. Chmiola, G. Yushin et al., Titanium carbide derived nanoporous carbon for energy-related applications. Carbon. 44, 2489–2497 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 313, 1760–1763 (2006)CrossRefGoogle Scholar
  18. 18.
    J.-H. Zhou, Z.-J. Sui, J. Zhu et al., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon. 45, 785–796 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Shen, H. Wang, Y. Liu, Q. Guo, Y. Zhang, Oxidization activated carbon fiber through nitrocellulose combustion. Colloids Surf. A 308, 20–24 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon. 35, 1799–1810 (1997)CrossRefGoogle Scholar
  21. 21.
    W. Shen, H. Wang, R. Guan, Z. Li, Surface modification of activated carbonfiber and its adsorption for vitamin B1 and folic acid. Colloids Surf. A 33, 263–267 (2008)CrossRefGoogle Scholar
  22. 22.
    L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77–84 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Shang, J.-Q. Chi et al. Nitrogen-doped oxidized carbon fiber as metal-free electrode towards highly efficient water oxidation. Int. J. Hydrogen Energy. 42, 28287–28297 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Liu, Y. Liu et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J. Power Sources. 341, 309–317 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Mitani, S.-I. Lee, K. Saito et al. Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas. Electrochim. Acta 51, 5487–5493 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Oschatz, M. Zeiger, N. Jackel et al. Emulsion soft templating of carbide derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage. J. Mater. Chem. 3, 17983–17990 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Xu, C. Wu, P. Yan et al. Enhanced electrochemical performance of graphitized carbide-derived carbon in alkaline electrolyte. Electrochim. Acta 174, 411–416 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Zheng, Y. Wang, X. Wang et al. The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide. J. Mater. Sci. 45, 6030–6037 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Wu, X. Wang, L. Jiang, C. Wu et al., The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J. Power Sources. 226, 202–209 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Oschatz, S. Boukhalfa, W. Nickel et al., Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon. 113, 283–291 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Valk, J. Nerut, I. Tallo et al., Structure and stability of partially chlorinated molybdenum carbide composite materials synthesised via high temperature chlorination. Electrochim. Acta 191, 337–345 (2016)CrossRefGoogle Scholar
  32. 32.
    B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer Academic Plenum, New York, 1999)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, R. Zhang, P. Yan et al., A novel approach of binary doping sulfur and nitrogen into graphene layers for enhancing electrochemical performances in supercapacitors. J. Mater. Chem. A. 4, 19053–19059 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Zhou, Y. Peng, H.B. Wu et al., Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy. 21, 80–89 (2016)CrossRefGoogle Scholar
  35. 35.
    K. Sun, S. Yu, Z. Hu et al., Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim. Acta 231, 417–428 (2017)CrossRefGoogle Scholar
  36. 36.
    F. Liu, D. Xue, Electrochemical energy storage applications of “pristine” graphene produced by non-oxidative routes. Sci. China. Technol. Sci. 58, 1841–1850 (2015)CrossRefGoogle Scholar
  37. 37.
    F. Liu, D. Xue, An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitance. Chem. Eur. J. 19, 10716–10722 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Chen, S. Song, F. Liu, D. Xue, Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44, 6230–6257 (2015)CrossRefGoogle Scholar
  39. 39.
    K. Chen, S. Song, D. Xue, Beyond graphene: materials chemistry toward high performance inorganic functional materials. J. Mater. Chem. A. 3, 2441–2453 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.Qian’an College, North China University of Science and TechnologyTangshanChina
  3. 3.Hefei GuoXuan High-Tech Power Energy Co., LTDHefeiChina

Personalised recommendations