Effect of high titanium blast furnace slag on preparing foam glass–ceramics for sound absorption

  • Zidi Yan
  • Keqin FengEmail author
  • Jian Tian
  • Yanfang Liu


Foam glass–ceramics for sound absorption were fabricated via a single-sintering method with high titanium blast furnace slag (HTBFS) and waste glass as the main materials. This study investigated the effects of HTBFS content on the microstructure and properties of foam glass–ceramics. The results show that the main phases of the sintered samples are diopside, perovskite and augite. With increasing HTBFS content from 38 to 48 wt%, the shape of crystals changes gradually and the crystallinity of the sintered samples decreases firstly and then increases, the bulk density and compressive strength increase, the porosity and open porosity decrease. All sintered samples have good sound absorption and corrosion resistant characteristics. The optimal properties, including the highest noise reduction coefficient (0.41) and a relatively high compressive strength (10.5 MPa) of the sintered samples, are prepared with 46 wt% HTBFS content. This research finds a new purpose of waste slag and expands the application range of foam glass–ceramics for sound absorption, especially sound barrier using in the traffic network because of a relative high impressive strength.


Foam glass–ceramics Blast furnace slag Sintering Crystallization Sound absorption 



The authors gratefully acknowledge the Strategic Cooperation Special Fund Project of Sichuan University-Panzhihua City for its financial support.


  1. 1.
    H. Bogo, D.R. Gomez, S.L. Reich, R.M. Negri, E. San Roman, Traffic pollution in a downtown site of Buenos Aires City. Atmos. Environ 35, 1717–1727 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Goswami, D. Singh, B. Vashist, S. Marwaha, Noise levels and sound pollution associated with various operative procedures and equipments in a pediatric dental environment—a clinical study. J. Oral. Biol. Craniol 7, 182–187 (2017)Google Scholar
  3. 3.
    S.A. Stansfeld, Noise pollution: non-auditory effects on health. Brit. Med. Bull 68, 243–257 (2003)CrossRefGoogle Scholar
  4. 4.
    C.Y. Duan, G. Cui, X.B. Xu, P.S. Liu, Sound absorption characteristics of a high-temperature sintering porous ceramic material. Appl. Acoust. 73(2012), 865–871CrossRefGoogle Scholar
  5. 5.
    H.Y. Cho, C.H. Choi, J.Y. Kim, D.H. Choi, S.W. Lee, Sound absorbing properties of foamed glasses. Mater. Sci. Forum 6(10), 486–487 (2015)Google Scholar
  6. 6.
    X.Z. Zhong, Material characters of foam glass and improvement of its properties for sound absorption. J. Audio Eng. Soc. 34, 4–8 (2018)Google Scholar
  7. 7.
    R. Mohammad, Y. B, S.H. Mehran, Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2–Al2O3–CaO–MgO(R2O) glass-ceramics. Ceram. Int. 37, 75–80 (2004)Google Scholar
  8. 8.
    N. El-Hazek, T.A. Lasheen, R. El-Sheikh, S.A. Zaki, Hydrometallurgical criteria for TiO2 leaching from Rosetta ilmenite by hydrochloric acid. Hydrometallurgy 87, 45–50 (2007)CrossRefGoogle Scholar
  9. 9.
    K.S. Lee, C.W. Lee, C.H. Lee, Effect of MgO addition in glass composition on the strength of zirconia-glass composites. J Korean Acad Dent. Technol. 29(1), 23–34 (2007)Google Scholar
  10. 10.
    F. Valighazvini, F. Rashchi, R.K. Nekouei, Recovery of Titanium from Blast Furnace Slag. Ind. Eng. Chem. Res. 52, 1723–1730 (2013)CrossRefGoogle Scholar
  11. 11.
    H.B. Wang, K.Q. Feng, Y. Zhou, Q. Sun, H. Shi, Effects of Na2B4O7·5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag. Mater. Lett. 132, 176–178 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Shi, K.Q. Feng, H.B. Wang, C.H. Chen, H.L. Zhou, Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag. Int. J. Miner. Metall. Mater 23(5), 595–600 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Karamanova, G. Avdeev, A. Karamanov, Ceramics from blast furnace slag, kaolin and quartz. J. Eur. Ceram. Soc. 31(6), 989–998 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Goel, D.U. Tulyaganov, S. Agathopoulos, M.J. Ribeiro, R.N. Basu, J.M.F. Ferreira, Diopside-Ca-Tschermak clinopyroxene based glass-ceramics processed via sintering and crystallization of glass powder compacts. J. Eur. Ceram. Soc. 27(5), 2325–2331 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Goel, D.U. Tulyaganov, S. Agathopoulos, M.J. Ribeiro, J.M.F. Ferreira, Crystallization behaviour, structure and properties of sintered glasses in the diopside–Ca-Tschermak system. J. Eur. Ceram. Soc. 27(10), 3231–3238 (2007)CrossRefGoogle Scholar
  16. 16.
    V. Cannillo, C. Leonelli, T. Manfredini, M. Montorsi, Computational simulations for the assessment of the mechanical properties of glass with controlled porosity. J Porous Mater. 10, 189–200 (2003)CrossRefGoogle Scholar
  17. 17.
    Z. Yang, Q. Lin, S. Lu, Y. He, G. Liao, Y. Ke, Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceram. Int. 40, 7297–7305 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Hwang, J. Wu, Effect of composition on microstructural development in MgO–Al2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 84(5), 1108–1112 (2010)CrossRefGoogle Scholar
  19. 19.
    H.R. Fernandes, D.U. Tulyaganov, J.M.F. Ferreira, Production and characterisation of glass ceramic foams from recycled raw materials. Adv. Appl. Ceram. 108, 9–13 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Gai, X. Li, B. Zhang, T. Xing, J. Zhao, Z. Ma, Experimental study on sound absorption performance of microperforated panel with membrane cell. Appl. Acoust. 110, 241–247 (2016)CrossRefGoogle Scholar
  21. 21.
    A.N. Wang, J.H. Tomg, Experimental study of the absorption characteristics of some porous fibrous materials. Appl. Acoust. 62(6), 447–459 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Manufacturing Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations