Advertisement

Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel

  • Y. M. Volfkovich
  • A. S. Lobach
  • N. G. Spitsyna
  • S. A. Baskakov
  • V. E. Sosenkin
  • A. Y. Rychagov
  • E. N. Kabachkov
  • A. Sakars
  • A. Michtchenko
  • Y. M. Shulga
Article
  • 53 Downloads

Abstract

Aerogel is obtained from graphene oxide reduced by a mixture of H3PO2 and I2. The porous structure of an aerogel has been studied at room temperature using the method of standard contact porosimetry. Both water and octane were used as working fluids, which allowed us to study the pore size distributions of hydrophilic and hydrophobic pores separately. It was found that very small pores, with the radius < 2.5 nm, and very large pores, with the radius more than 100 nm, were mostly hydrophobic, while the intermediate pores were hydrophilic.

Keywords

Graphene oxide aerogel Porous carbon Porous structure Standard contact porosimetry 

Notes

Acknowledgements

The work of the IPCP RAS staff was carried out in the frame of the State tasks (registration numbers 0089-2014-0025 and 0089-2014-0036).

Funding

Funding was provided by Russian Science Foundation (Grant No. 15-13-00166).

Supplementary material

10934_2018_712_MOESM1_ESM.docx (836 kb)
Supplementary material 1 (DOCX 836 KB)

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  3. 3.
    A.K. Geim, Science 324, 1530 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)CrossRefGoogle Scholar
  5. 5.
    M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Chen, L. Tang, J. Li, Chem. Soc. Rev. 39, 3157 (2010)CrossRefGoogle Scholar
  7. 7.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ASC Nano 4, 4806 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Gao, S. Dong, Chem. Soc. Rev. 40, 2644 (2011)CrossRefGoogle Scholar
  9. 9.
    V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chena, J. Zhang, Energy Environ Sci. 7, 1564 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Xu, G. Shi, X. Duan, Acc. Chem. Res. 48, 1666 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, G. Shi, J. Phys. Chem. C 115, 17206 (2011)CrossRefGoogle Scholar
  13. 13.
    M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr., T.F. Baumann, J. Am. Chem. Soc. 132, 14067 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhanc, B. Liu, J. Mater. Chem. 21, 6494 (2011)CrossRefGoogle Scholar
  15. 15.
    H.D. Pham, V.H. Pham, T.V. Cuong, T.D. Nguyen-Phan, J.S. Chung, E.W. Shin, S. Kim, Chem. Commun. 47, 9672 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Housing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)CrossRefGoogle Scholar
  18. 18.
    W. Chen, S. Li, C. Chen, L. Yan, Adv. Mater. 23, 5679 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Wang, C. Xu, J. Sun, L. Gao, Sci. Rep. 4, 7171 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Cong, X. Ren, P. Wang, S. Yu, ACS Nano 6, 2693 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Liu, J. Cui, J. Sun, X. Zhang, RSC Adv. 14, 22601 (2014)CrossRefGoogle Scholar
  22. 22.
    A.S. Lobach, V.A. Kazakov, N.G. Spitsyna, S.A. Baskakov, N.N. Dremova, Y.M. Shulga, High Energy Chem. 51, 269 (2017)CrossRefGoogle Scholar
  23. 23.
    Y.M. Volfkovich, V.S. Bagotzky, J. Power Sources 48, 339 (1994)CrossRefGoogle Scholar
  24. 24.
    Y.M. Volfkovich, A.N. Filippov, V.S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014)CrossRefGoogle Scholar
  25. 25.
    Y.S. Dzyazko, Y.M. Volfkovich, V.E. Sosenkin, N.F. Nikolskaya, Y.P. Gomza, Nanoscale Res. Lett. 9, 271 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Rouquerol, G. Baron, R. Denoyel, H.J. Giesche, K.P. Groen, P.E. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K.S. William, K.S. Sing, M.K.K. Thommes, Pure Appl. Chem. 84, 107 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, V.S. Bagotsky, J. Solid State Electrochem. 18, 1351 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.M. Volfkovich, D.A. Bograchev, A.Y. Rychagov, V.E. Sosenkin, M.Y. Chaika, J. Solid State Electrochem. 19, 2771 (2015)CrossRefGoogle Scholar
  29. 29.
    N.A. Kononenko, N.P. Berezina, N.V. Loza, Colloids Surf. A 239, 59 (2004)CrossRefGoogle Scholar
  30. 30.
    N.P. Berezina, N.A. Kononenko, A.R. Sytcheva, N.V. Loza, S.A. Shkirskaya, N. Hegman, A. Pungor, Electrochim. Acta 54, 2342 (2009)CrossRefGoogle Scholar
  31. 31.
    Y.M. Shulga, S.A. Baskakov, Y.V. Baskakova, A.S. Lobach, Y.M. Volfkovich, V.E. Sosenkin, N.Y. Shulga, Y.N. Parkhomenko, A. Michtchenko, Y. Kumar, Microporous Mesoporous Mater. 245, 24 (2017)CrossRefGoogle Scholar
  32. 32.
    W.S. Hummers, R.E. Offman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  33. 33.
    Y.M. Shulga, S.A. Baskakov, Y.V. Baskakova, Y.M. Volfkovich, N.Y. Shulga, E.A. Skryleva, Y.N. Parkhomenko, K.G. Belay, G.L. Gutsev, A.Y. Rychagov, V.E. Sosenkin, I.D. Kovalev, J. Power Sources 279, 722 (2015)CrossRefGoogle Scholar
  34. 34.
    L.I. Buravov, V.N. Zverev, A.V. Kazakova, N.D. Kushch, A.I. Manakov, Instrum. Exp. Tech. 51, 156 (2008)CrossRefGoogle Scholar
  35. 35.
    L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131, 11027 (2009)CrossRefGoogle Scholar
  36. 36.
    F. Perrozzi, S. Croce, E. Treossi, V. Palermo, S. Santucci, G. Fioravanti, L. Ottaviano, Carbon 77, 473 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Tang, L. Zhang, R. Li, J. Wu, M.N. Hedhilib, P. Wang, Nanoscale 8, 1108 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z. Shen, C.S. Bhatia, H. Yang, Langmuir 26, 3798 (2010)CrossRefGoogle Scholar
  39. 39.
    R. Raj, S.C. Maroo, E.N. Wang, Nano Lett. 13, 1509 (2013)CrossRefGoogle Scholar
  40. 40.
    Z.L. Hou, X.D. Liu, W.L. Song, H.M. Fang, S. Bi, J. Mater. Chem. C 5, 3397 (2017)CrossRefGoogle Scholar
  41. 41.
    B. Dyatkin, N.C. Osti, Y. Zhang, H.-W. Wang, E. Mamontov, W.T. Heller, P. Zhang, G. Rother, P.T. Cummings, D.J. Wesolowski, Y. Gogotsi, Carbon 129, 104 (2018)CrossRefGoogle Scholar
  42. 42.
    B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2, 16098 (2017)CrossRefGoogle Scholar
  43. 43.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)CrossRefGoogle Scholar
  44. 44.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  45. 45.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)CrossRefGoogle Scholar
  46. 46.
    Y.M. Volfkovich, A.A. Mikhalin, A.Y. Rychagov, Russ. J. Electrochem. 49, 594 (2013)CrossRefGoogle Scholar
  47. 47.
    Y.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, A.Y. Rychagov, V.E. Sosenkin, D. Park, Desalin. Water Treat. 69, 130 (2017)CrossRefGoogle Scholar
  48. 48.
    S.J. Gregg, K.S. Sing, Adsorption, Surface and Porosity (Academic Press, London, 1967)Google Scholar
  49. 49.
    Y.M. Volfkovich, A.Y. Rychagov, V.E. Sosenkin, O.N. Efimov, M.I. Osmakov, A.F. Seliverstov, Russ. J. Electrochem. 50, 1099 (2014)CrossRefGoogle Scholar
  50. 50.
    K. Breitsprecher, C. Holm, S. Kondrat, ACS Nano 12, 9733 (2018)CrossRefGoogle Scholar
  51. 51.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)CrossRefGoogle Scholar
  52. 52.
    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 5, 987 (2006)CrossRefGoogle Scholar
  53. 53.
    A.R. Köhler, C. Som, A. Helland, F. Gottschalk, J. Clean Prod. 16, 927 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 872 (2009)CrossRefGoogle Scholar
  55. 55.
    L. Dai, D.W. Chang, J.-B. Baek, W. Lu, Small 8, 1130 (2012)CrossRefGoogle Scholar
  56. 56.
    J. Wang, C. Wu, Q. Deng, K. Jiang, L. Shang, Z. Hu, J. Chu, Nanoscale 10, 13140 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. M. Volfkovich
    • 1
  • A. S. Lobach
    • 2
  • N. G. Spitsyna
    • 2
  • S. A. Baskakov
    • 2
  • V. E. Sosenkin
    • 1
  • A. Y. Rychagov
    • 1
  • E. N. Kabachkov
    • 2
  • A. Sakars
    • 3
  • A. Michtchenko
    • 4
  • Y. M. Shulga
    • 2
    • 5
  1. 1.A.N.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  3. 3.MPM&P Researcn Inc.NewmarketCanada
  4. 4.Instituto Politécnico Nacional, SEPI-ESIME-ZacatencoCiudad de MéxicoMexico
  5. 5.National University of Science and Technology MISISMoscowRussian Federation

Personalised recommendations