Advertisement

Silica rich MIL-101(Cr) for enhanced hydrogen uptake

  • Dharmendra K. Panchariya
  • Rohit K. Rai
  • E. Anil KumarEmail author
  • Sanjay K. SinghEmail author
Article
  • 54 Downloads

Abstract

Hybrid composite of MIL-101 with silica rich rice husk ash (RHA) was fabricated to explore such materials for improved low pressure hydrogen storage applications, compared to the well explored carbon based composites of MIL-101. RHA–MIL-101 was prepared by in situ incorporation of RHA in MIL-101 during the synthesis, under hydrothermal conditions. The incorporation of RHA in MIL-101 was confirmed by P-XRD, FTIR, TGA, SEM, EDS, and N2 adsorption and desorption isotherms studies. The as-synthesized RHA–MIL-101 composite displayed enhanced BET surface area (8.6% compared to bare MIL-101), whereas AC–MIL-101 showed an enhancement of 12.7% in BET surface area compared to bare MIL-101. Hydrogen uptake properties of these materials were evaluated at 77 K and 1 bar. Despite that RHA–MIL-101 exhibited lower surface area as compared to AC–MIL-101, the hydrogen uptake capacities of RHA–MIL-101 reached an enhanced value of 1.54 wt%, which is obviously higher than the bare MIL-101 (1.40 wt%) and AC–MIL-101 (1.48 wt%) by 9.1% and 5.7%, respectively, as well as comparable to most of the reported carbon incorporated MOFs. It has been observed that improved hydrogen uptake properties was due to the bifunctional properties of the synthesized RHA–MIL-101, abundance of silanol bonds of RHA (which shows high affinity towards H2 molecules), and tuned porous properties of RHA–MIL-101. Moreover, hydrogen adsorption isotherms data of these materials were best fitted with three parameter non-linear adsorption equilibrium isotherm equations.

Keywords

MIL-101 Silica rich composite Rice husk ash Hydrogen storage 

Notes

Acknowledgements

This work is financially supported by IIT Indore and SERB (DST), New Delhi. D.K.P. thanks IIT Indore and MHRD, Govt. of India, for his fellowship. R.K.R. thanks IIT Indore for his institute post-doctoral grant. The authors thank SIC, IIT Indore, for extending instrumentation facilities. Generous help from Dr. Pratibha Sharma, DAVV Indore for FTIR measurements is also acknowledged. The authors also thank Nishant Enterprises, Katni, India for providing rice husk ash (RHA). The authors would also like to thank Dr. Lakshmi Iyengar, former visiting faculty, School of Humanities and Social Science, IIT Indore for her valuable suggestions during the preparation of this manuscript.

Supplementary material

10934_2018_710_MOESM1_ESM.docx (10.4 mb)
Supplementary material 1 (DOCX 10677 KB)

References

  1. 1.
    L. Schlapbach, A. Zuttel, Nature 414, 353 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Zuttel, Mater. Today 6, 24 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Graetz, Chem. Soc. Rev. 38, 73 (2009)CrossRefGoogle Scholar
  4. 4.
    J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed. 44, 4670 (2005)CrossRefGoogle Scholar
  5. 5.
    S.S. Murthy, E.A. Kumar, Appl. Therm. Eng. 72, 176 (2014)CrossRefGoogle Scholar
  6. 6.
    H.W. Langmi, J. Rena, B. Northa, M. Mathea, D. Bessarabov, Electrochim. Acta 128, 368 (2014)CrossRefGoogle Scholar
  7. 7.
    M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112, 782 (2012)CrossRefGoogle Scholar
  8. 8.
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Sculley, D. Yuan, H.C. Zhou, Energy Environ. Sci. 4, 2721 (2011)CrossRefGoogle Scholar
  10. 10.
    L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38, 1294 (2009)CrossRefGoogle Scholar
  11. 11.
    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)CrossRefGoogle Scholar
  12. 12.
    J.R. Long, O.M. Yaghi, Chem. Soc. Rev. 38, 1213 (2009)CrossRefGoogle Scholar
  13. 13.
    G. Kaur, R.K. Rai, D. Tyagi, X. Yao, P.Z. Li, X.C. Yang, Y. Zhao, Q. Xu, S.K. Singh, J. Mater. Chem. A 4, 14932 (2016)CrossRefGoogle Scholar
  14. 14.
    R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou, Coord. Chem. Rev. 253, 3042 (2009)CrossRefGoogle Scholar
  15. 15.
    S.T. Meek, J.A. Greathouse, M.D. Allendorf, Adv. Mater. 23, 249 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Ferey, C.M. Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I.A. Margiolaki, Science 309, 2040 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Angew. Chem. Int. Ed. Engl. 45, 5974 (2006)CrossRefGoogle Scholar
  18. 18.
    Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Chem. Int. Ed. 47, 4144 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Bhattacharjee, C. Chen, W.S. Ahn, RSC Adv. 4, 52500 (2014)CrossRefGoogle Scholar
  20. 20.
    X.W. Liu, T.J. Sun, J.L. Hu, S.D. Wang, J. Mater. Chem. A 4, 3584 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Janiak, J.K. Vieth, New J. Chem. 34, 2366 (2010)CrossRefGoogle Scholar
  22. 22.
    K.P. Prasanth, P. Rallapalli, M.C. Raj, H.C. Bajaj, R.V. Jasra, Int. J. Hydrog. Energy 36, 7594 (2011)CrossRefGoogle Scholar
  23. 23.
    P.B.S. Rallapall, M.C. Raj, D.V. Patil, K.P. Prasanth, R.S. Somani, H.C. Bajaj, Int. J. Energy Res. 37, 746 (2013)CrossRefGoogle Scholar
  24. 24.
    D.K. Panchariya, R.K. Rai, S.K. Singh, E.A. Kumar, Mater. Today Proc. 4, 388 (2017)CrossRefGoogle Scholar
  25. 25.
    P.A. Szilagyi, E. Callini, A. Anastasopol, C. Kwakernaak, S. Sachdeva, R.V.D. Krol, H. Geerlings, A. Borgschulte, A. Zuttel, B. Dam, Phys. Chem. Chem. Phys. 16, 5803 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Anbia, S. Mandegarzad, J. Alloys Compd. 532, 61 (2012)CrossRefGoogle Scholar
  27. 27.
    K.S. Lin, A.K. Adhikari, Y.H. Su, C.W. Shu, H.Y. Chan, Adsorption 18, 483 (2012)CrossRefGoogle Scholar
  28. 28.
    Q.L. Zhu, Q. Xu, Chem. Soc. Rev. 43, 5468 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Jiang, Y. Feng, M. Chen, Y. Wang, Int. J. Hydrog. Energy 38, 10950 (2013)CrossRefGoogle Scholar
  31. 31.
    P.K. Prabhakaran, J. Deschamp, J. Mater. Chem. A 3, 7014 (2015)CrossRefGoogle Scholar
  32. 32.
    K.L. Mulfort, J.T. Hupp, J. Am. Chem. Soc. 129, 9604 (2007)CrossRefGoogle Scholar
  33. 33.
    S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R. Park, Chem. Mater. 9, 1893 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Sigl, S. Ernst, J. Weitkamp, H. Knozinger, Catal. Lett. 45, 27 (1997)CrossRefGoogle Scholar
  35. 35.
    J. Hohmeyer, E.V. Kondratenko, M. Bron, J. Krohnert, F.C. Jentoft, F. Schlogl, P. Claus, J. Catal. 269, 5 (2010)CrossRefGoogle Scholar
  36. 36.
    V.K. Rajagopal, R.D. Guthrie, T. Fields, B.H. Davis, Catal. Today 31, 57 (1996)CrossRefGoogle Scholar
  37. 37.
    Z. Karimi, A. Morsali, J. Mater. Chem. A 1, 3047 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Lin, Q. Yan, C. Kong, L. Chen, Sci. Rep. 3, 1859 (2013)CrossRefGoogle Scholar
  39. 39.
    L. Bromberg, Y. Diao, H. Wu, S.A. Speakman, T.A. Hatton, Chem. Mater. 24, 1664 (2012)CrossRefGoogle Scholar
  40. 40.
    K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)CrossRefGoogle Scholar
  41. 41.
    V.K. Singh, E.A. Kumar, Appl. Therm. Eng. 97, 77 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Du, J. He, Nanoscale 4, 852 (2012)CrossRefGoogle Scholar
  43. 43.
    F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regi, J. Am. Chem. Soc. 128, 8116 (2006)CrossRefGoogle Scholar
  44. 44.
    J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, J. Am. Chem. Soc. 126, 5666 (2004)CrossRefGoogle Scholar
  45. 45.
    J.S. Li, Y.J. Tang, S.L. Li, S.R. Zhang, Z.H. Dai, L. Si, Y.Q. Lan, Cryst. Eng. Comm. 17, 1080 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Li, R.T. Yang, J. Phys. Chem. B 110, 17175 (2006)CrossRefGoogle Scholar
  47. 47.
    L. Wang, R.T. Yang, Ind. Eng. Chem. Res. 49, 3634 (2010)CrossRefGoogle Scholar
  48. 48.
    S.Y. Lee, S.J. Park, J. Nanosci. Nanotechnol. 13, 443 (2013)CrossRefGoogle Scholar
  49. 49.
    J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc. 128, 1304 (2006)CrossRefGoogle Scholar
  50. 50.
    S.J. Yang, J.H. Cho, K.S. Nahm, C.R. Park, Int. J. Hydrog. Energy 35, 13062 (2010)CrossRefGoogle Scholar
  51. 51.
    M. Sabo, A. Henschel, H. Frode, E. Klemm, S. Kaskel, J. Mater. Chem. 17, 3827 (2007)CrossRefGoogle Scholar
  52. 52.
    A.C. Chien, S.S.C. Chuang, Int. J. Hydrog. Energy 36, 6022 (2011)CrossRefGoogle Scholar
  53. 53.
    K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. USA 103, 10186 (2006)CrossRefGoogle Scholar
  54. 54.
    D. Saha, Z. Wei, S. Deng, Int. J. Hydrog. Energy 33, 7479 (2008)CrossRefGoogle Scholar
  55. 55.
    Y. Li, R.T. Yang, Langmuir 23, 12937 (2007)CrossRefGoogle Scholar
  56. 56.
    G. Calleja, J.A. Botas, M.S. Sanchez, M.G. Orcajo, Int. J. Hydrog. Energy 35, 9916 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.Discipline of ChemistryIndian Institute of Technology IndoreIndoreIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology TirupatiTirupatiIndia
  4. 4.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations