Phenol hydroxylation over Fe and Co-loaded mesoporous MCM-48

  • Ashapurna BoroEmail author
  • Anup K. Talukdar


Iron and cobalt incorporated MCM-48 molecular sieves with Si/M = 40, 80 and 100 (where M is either iron or cobalt) have been synthesized using tetraethylorthosilicate as the silica source and cetyltrimethylammonium bromide as template under hydrothermal conditions. Characterization of the synthesized materials were done by XRD, SEM, UV–Vis., TGA, N2 adsorption–desorption and FTIR analysis. The XRD patterns of metal incorporated materials showed well-ordered MCM-48 structure and UV–Vis. study confirmed the sufficient incorporation of the metal ions in the tetrahedral coordination within the framework structure. The catalytic activity and selectivity of these catalysts were studied for liquid phase hydroxylation of phenol using H2O2 as oxidant. Catechol was obtained as major product whereas hydroquinone was obtained as a minor one.


Heterogeneous hydroxylation Phenol H2O2 MCM-48 


Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    K.K. Bania, D. Bharali, B. Viswanathan, R.C. Deka, Inorg. Chem. 51, 1657–1674 (2012)CrossRefGoogle Scholar
  2. 2.
    S.K. Das, S.P. Mahanta, K.K. Bania, RSC Adv. 4, 51496–51509 (2014)CrossRefGoogle Scholar
  3. 3.
    C.T. Kresge, M.E. Lenowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)CrossRefGoogle Scholar
  4. 4.
    W. Zhao, Q.Z. Li, L.N. Wang, J.L. Chu, J.K. Qu, S.H. Li, T. Qi, Langmuir 26, 6982 (2010)CrossRefGoogle Scholar
  5. 5.
    P.J. Branton, P.G. Hall, K.S.W. Sing, J. Chem. Soc. Chem. Commun. 16, 1257 (1993)CrossRefGoogle Scholar
  6. 6.
    J.W. Lee, D.L. Cho, W.G. Shim, H. Moon, Korean J. Chem. Eng. 21, 246 (2004)CrossRefGoogle Scholar
  7. 7.
    L. Huang, Q.L. Huang, H.N. Xiao, M. Eic, Microporous Mesoporous Mater. 111, 404 (2008)CrossRefGoogle Scholar
  8. 8.
    P.A. Russo, M.M.L. Ribeiro Carrott, P.J.M. Carrott, J.M. Lopes, F. Ramôa Ribeiro, J. Rocha, Microporous Mesoporous. Mater. 114, 293 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Hadjiivanov, T. Tsoncheva, M. Dimitrov, C. Minchev, H. Knözinger, Appl. Catal. A 6376, 1 (2002)Google Scholar
  10. 10.
    T. Kawabata, Y. Ohishi, S. Itsuki, N. Fujisaki, T. Shishido, K. Takaki, Q. Zhang, Y. Wang, K. Takehira, J. Mol. Catal. A 236, 99–106 (2005)CrossRefGoogle Scholar
  11. 11.
    D.H. Koo, G.M. Kim, S. Chang, Org. Lett. 7, 5015–5018 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Nandi, A.K. Talukdar, J. Porous Mater. 23, 1143–1154 (2016)CrossRefGoogle Scholar
  13. 13.
    K.K. Bania, G.V. Karunakarb, L. Satyanarayana, RSC. Adv. 5, 33185–33198 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Moller, T. Bein Chem. Mater. 10, 2950–2963 (1998)CrossRefGoogle Scholar
  15. 15.
    B. Kalita, P. Phukan, A.K. Talukdar, Catal. Sci. Technol. 2, 2341–2350 (2012)CrossRefGoogle Scholar
  16. 16.
    D.R. Das, A.K. Talukdar, Chem. Select 2, 8983–8989 (2017)Google Scholar
  17. 17.
    W. Zhao, Y. Luo, P. Deng, Q. Li, Catal. Lett. 73, 2–4 (2001)CrossRefGoogle Scholar
  18. 18.
    V. Parvulescu, B.L. Su, Catal. Today 69, 315 (2001)CrossRefGoogle Scholar
  19. 19.
    V. Pârvulescu, C. Anastasescu, B.L. Su, J. Mol. Catal. A 211, 143 (2004)CrossRefGoogle Scholar
  20. 20.
    St.G. Christoskova, M. Stoyanova, M. Georgieva, Appl. Catal. A 208, 243–249 (2001)CrossRefGoogle Scholar
  21. 21.
    M.F. Pistonesi, M.S. Di Nezio, M.E. Centurion, M.E. Palomeque, A.G. Lista, B.S. Fernandez Band, Talanta 69, 1265–1268 (2006)CrossRefGoogle Scholar
  22. 22.
    N.S. Inchaurrondo, P. Massa, R. Fenoglio, J. Font, P. Haure, Chem. Eng. J. 198–199, 426–434 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Keav, A.E. de los Monteros, J. Barbier Jr., D. Duprez, Appl. Catal. B 150–151, 402–410 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Zhang, L. Zhi, H. Li, H. Long, W. Zhao, Chem. Eng. J. 229, 99–104 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Hurwitz, P. Pornwongthong, S. Mahendra, E.M.V. Hoek, Chem. Eng. J. 240, 235–243 (2014)CrossRefGoogle Scholar
  26. 26.
    E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M.O. Tade, S. Wang, J. Colloid Interface Sci. 407, 467–473 (2013)CrossRefGoogle Scholar
  27. 27.
    A.B. Ayusheev, O.P. Taran, I.A. Seryak, O.Y. Podyacheva, C. Descorme, M. Besson, L.S. Kibis, A.I. Boronin, A.I. Romanenko, Z.R. Ismagilov, V. Parmon, Appl. Catal. B 146, 177–185 (2014)CrossRefGoogle Scholar
  28. 28.
    S.F. Mapolie, J.L. van Wyk, Inorg. Chim. Acta 394, 649–655 (2013)CrossRefGoogle Scholar
  29. 29.
    K.K. Bania, R.C. Deka, J. Phys. Chem. C 117, 11663–11678 (2013)CrossRefGoogle Scholar
  30. 30.
    H.S. Abbo, S.J.J. Titinchi, S. Chand, R. Prasad, J. Mol. Catal. A 218, 125–132 (2004)CrossRefGoogle Scholar
  31. 31.
    L.Z. Wang, Y.F. Shao, J.L. Zhang, M. Anpo, Microporous Mesoporous Mater. 100, 241 (2007)CrossRefGoogle Scholar
  32. 32.
    Y.F. Shao, L.Z. Wang, J.L. Zhang, M. Anpo, J. Phys. Chem. B 109, 20835 (2005)CrossRefGoogle Scholar
  33. 33.
    X.L. Yang, W.L. Dai, R.H. Gao, H. Chen, H.X. Li, Y. Cao, K.N. Fan, J. Mol. Catal. A 241, 205 (2005)CrossRefGoogle Scholar
  34. 34.
    M.L. Pena, A. Dejoz, V. Fornés, F. Rey, M.I. Vázquez, J.M. López Nieto, Appl. Catal. A 241, 155 (2001)CrossRefGoogle Scholar
  35. 35.
    S.C. Laha, P. Mukherjee, S.R. Sainkar, R. Kumar, J. Catal. 207, 213 (2002)CrossRefGoogle Scholar
  36. 36.
    T. Inui, H. Nagata, M.J. Inoue, J. Catal. 139, 482 (1993)CrossRefGoogle Scholar
  37. 37.
    A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka, Science 261, 1299–1303 (1993)CrossRefGoogle Scholar
  38. 38.
    S.E. Dapurkar, A. Sakthivel, P. Selvam, New J. Chem. 27, 1184–1190 (2003)CrossRefGoogle Scholar
  39. 39.
    M. Guidotti, C. Pirovano, N. Ravasio, B. L´azaro, J.M. Fraile, J.A. Mayoral, B. Coq, A. Galarneau, Green Chem. 11, 1421–1427 (2009)CrossRefGoogle Scholar
  40. 40.
    W. Zhan, Y. Guo, Y. Wang, X. Liu, Y. Guo, Y. Wang, Z. Zhang, G. Lu, J. Phys. Chem. B 111, 12103–12110 (2007)CrossRefGoogle Scholar
  41. 41.
    P. Ratnasamy, R. Kumar, Catal. Today 9, 341 (1991)CrossRefGoogle Scholar
  42. 42.
    R. Bongiovanni, D. Meisel, Chim. l’Indust. 4, 261 (1994)Google Scholar
  43. 43.
    S. Bordiga, R. Buzzoni, G. Vlaic, J. Catal. 158, 486 (1996)CrossRefGoogle Scholar
  44. 44.
    S. Lim, D. Ciuparu, Y.H. Yang, G. Du, L.D. Pfefferle, G.L. Haller, Microporous Mesoporous Mater. 101, 200 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, G. Haller, J. Phys. Chem. B 107, 11048 (2003)CrossRefGoogle Scholar
  46. 46.
    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62, 1723–1732 (1940)CrossRefGoogle Scholar
  47. 47.
    A. Dubey, V. Rives, S. Kannan, J. Mol. Catal. A 181, 151 (2002)CrossRefGoogle Scholar
  48. 48.
    P.-S.E. Dai, R.H. Petty, C.W. Ingram, R. Szostak, Appl. Catal. A 143, 101 (1996)CrossRefGoogle Scholar
  49. 49.
    C. Liu, Y. Shan, X. Yang, X. Ye, Y. Wu, J. Catal. 168, 35 (1997)CrossRefGoogle Scholar
  50. 50.
    M.M. Mohamed, N.A. Eissa, Mater. Res. Bull. 38, 1993 (2003)CrossRefGoogle Scholar
  51. 51.
    K. Fajerwerg, H. Debellefontaine, Appl. Catal. B 10, L229–L235 (1996)CrossRefGoogle Scholar
  52. 52.
    T. Atoguchi, T. Kanougi, T. Yamamoto, S. Yao, J. Mol. Catal. A 220, 183–187 (2004)CrossRefGoogle Scholar
  53. 53.
    O.J. Kerton, P. McMorn, D. Bethell, F. King, F. Hancock, A. Burrows, C.J. Kiely, S. Ellwood, G. Hutchings, Phys. Chem. Chem. Phys. 7, 2671–2678 (2005)CrossRefGoogle Scholar
  54. 54.
    J.S. Choi, S.S. Yoon, S.H. Jang, W.S. Ahn, Catal. Today 111, 280–287 (2006)CrossRefGoogle Scholar
  55. 55.
    C. Wu, Y. Kong, F. Gao, Y. Wu, Y. Lu, J. Wang, L. Dong, Microporous Mesoporous Mater. 113, 163–170 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryCotton UniversityGuwahatiIndia
  2. 2.Department of ChemistryGauhati UniversityGuwahatiIndia

Personalised recommendations