Structure and luminescence of extraframework TiCl62− in Cs+-containing zeolite LTA

  • Gi Beom Park
  • Joon Young Kim
  • Hong Joo Kim
  • Nam Ho Heo
  • Karl Seff


Octahedral TiCl62− ions were introduced into zeolite LTA at extraframework positions by allowing TiCl4(g) to react with dehydrated Cs,Na-A. The structure of the product, Ti,Cl,Cs,Na-A, was determined by single-crystal crystallographic technique in the space group \(Pm\bar {3}m\) (a = 12.228(1) Å) and refined to the error index R1 = 0.046. Its composition was confirmed by energy-dispersive X-ray analysis. Octahedral TiCl62− ions center 8% of the large cavities. The TiCl62− ion is stabilized by eight surrounding Cs+ ions to form a Cs8TiCl66+ cluster. Each of these Cl ions bonds further to an 8-ring Cs+ ion. These 8-ring Cs+ ions bridge between TiCl62− ions of adjacent unit cells to form a Cs11TiCl69+ continuum in the surface volume of the crystal. The X-ray induced luminescence spectrum of the product is a broad band from 360 to 700 nm, peaking at 475 nm. The emission is red-shifted and less intense than those of M,Cl,Cs,Na-A, M = Zr and Hf, but appears to occur by the same self-trapped exciton (STE) mechanism.


Crystal structure Luminescence Zeolite A Vapor-phase reaction Extraframework Ti4+ TiCl62− 



We gratefully acknowledge the Photon Factory (PF), High Energy Accelerator Research Organization, KEK, Tsukuba, Japan for the use of their synchrotron, diffractometer, and computing facilities. The color CCD images were taken at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. This work was supported by a National Research Foundation of Korea (NRF) Grant No. NRF-2017R1E1A1A01074837 funded by the Korean government (MSTI).

Supplementary material

10934_2018_708_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 122 KB)


  1. 1.
    G. Peregot, G. Bellussi, C. Corno, M. Taramasso, F. Buonomot, A. Esposito, Stud. Surf. Sci. Catal. 28, 129–136 (1986)CrossRefGoogle Scholar
  2. 2.
    N. Phonthammachai, M. Krissanasaeranee, E. Gulari, A. Jamieson, S. Wongkasemjit, Mater. Chem. Phys. 97, 458–467 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Duprey, P. Beaunier, M.-A. Springuel-Huet, F. Bozon-Verduraz, J. Fraissard, J.-M. Manoli, J.-M. Brégeault, J. Catal. 165, 22–32 (1997)CrossRefGoogle Scholar
  4. 4.
    Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896–910 (2006)CrossRefGoogle Scholar
  5. 5.
    J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 87, 153–161 (2005)CrossRefGoogle Scholar
  6. 6.
    J.P. Nogier, Y. Millot, P.P. Man, T. Shishido, M. Che, S. Dzwigaj, J. Phys. Chem. C 113, 4885–4889 (2009)CrossRefGoogle Scholar
  7. 7.
    C.F.J. Baes, R.E. Mesmer, The Hydrolysis of Cations (Krieger Publishing Company, Malabar, 1986), pp. 148–151Google Scholar
  8. 8.
    K. Seff, J. Phys. Chem. C 114, 13295–13299 (2010)CrossRefGoogle Scholar
  9. 9.
    C.W. Lee, J.Y. Kim, H.J. Kim, N.H. Heo, K. Seff, J. Phys. Chem. C 120, 18682–18693 (2016)CrossRefGoogle Scholar
  10. 10.
    J.Y. Kim, H.J. Kim, N.H. Heo, K. Seff, J. Phys. Chem. C 121, 19619–19633 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Derenzo, M. Weber, E. Bourret-Courchesne, M. Klintenberg, Nucl. Instrum. Methods A. 505, 111–117 (2003)CrossRefGoogle Scholar
  12. 12.
    M.J. Weber, J. Lumin. 100, 35–45 (2002)CrossRefGoogle Scholar
  13. 13.
    N.H. Heo, Y. Kim, J.J. Kim, K. Seff, J. Phys. Chem. C 120, 5277–5287 (2016)CrossRefGoogle Scholar
  14. 14.
    N.H. Heo, C.W. Chun, J.S. Park, W.T. Lim, M. Park, S.L. Li, L.P. Zhou, K. Seff, J. Phys. Chem. B 106, 4578 (2002)CrossRefGoogle Scholar
  15. 15.
    T. Sun, K. Seff, Chem. Rev. 94, 857–870 (1994)CrossRefGoogle Scholar
  16. 16.
    J.F. Charnell, J. Cryst. Growth 8, 291–294 (1971)CrossRefGoogle Scholar
  17. 17.
    T.B. Vance Jr., K. Seff, J. Phys. Chem. 79, 2163–2167 (1975)CrossRefGoogle Scholar
  18. 18.
    J.W. Shin, K. Eom, D.H. Moon, J. Synchrotron Radiat. 23, 369–373 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Otwinowski, W. Minor, Methods Enzymol. 276, 307–326 (1997)CrossRefGoogle Scholar
  20. 20.
    Bruker AXS inc., Program for Automatic Space Group Determination. (Bruker AXS inc., Madison, 2001)Google Scholar
  21. 21.
    H.J. Kim, A. Annenkov, R. Boiko, O. Buzanov, D. Chernyak, J. Cho, F. Danevich, A. Dossovitsky, G. Rooh, U. Kang, IEEE Trans. Nucl. Sci. 57, 1475–1480 (2010)CrossRefGoogle Scholar
  22. 22.
    G.M. Sheldrick, Acta Crystallogr. Sect. A 64, 112–122 (2008)CrossRefGoogle Scholar
  23. 23.
    V. Subramanian, K. Seff, J. Phys. Chem. 81, 2249–2251 (1977)CrossRefGoogle Scholar
  24. 24.
    R.C. Weast, Handbook of Chemistry and Physics, 64th edn. (CRC Press, Boca Raton, 1983/1984), p. F.170Google Scholar
  25. 25.
    D.T. Cromer, Acta Crystallogr. 18, 17–23 (1965)CrossRefGoogle Scholar
  26. 26.
    D.K. Lonsdale, International Tables for X-ray Crystallography, vol. IV (Kynoch Press, Birmingham, 1974), p. 148Google Scholar
  27. 27.
    G. Vitale, L.M. Bull, R.E. Morris, A.K. Cheetham, B.H. Toby, C.G. Coe, J.E. Mac Dougall, J. Phys. Chem. 99, 16087–16092 (1995)CrossRefGoogle Scholar
  28. 28.
    R.X. Fischer, M. Sehovic, W.H. Baur, C. Paulmann, T.M. Gesing, Z. Kristallogr. 227, 438–445 (2012)CrossRefGoogle Scholar
  29. 29.
    N.H. Heo, K. Seff, J. Am. Chem. Soc. 109, 7986–7992 (1987)CrossRefGoogle Scholar
  30. 30.
    Y. Li, S.J. Kim, J. Phys. Chem. B 109, 12309–12315 (2005)CrossRefGoogle Scholar
  31. 31.
    X. Qiu, Y. Zhao, C. Burda, Adv. Mater. 19, 3995–3999 (2007)CrossRefGoogle Scholar
  32. 32.
    B. Olthof, A. Khodakov, A.T. Bell, E. Iglesia, J. Phys. Chem. B 104, 1516–1528 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Structural Chemistry, Department of Applied Chemistry, College of EngineeringKyungpook National UniversityDaeguSouth Korea
  2. 2.Department of Physics, College of Natural ScienceKyungpook National UniversityDaeguSouth Korea
  3. 3.Department of ChemistryUniversity of HawaiiHonoluluUSA

Personalised recommendations