Preparation, characterization and application of sulfonated mesoporous hollow carbon microspheres

  • Xiuhua Ma
  • Hong YuanEmail author
  • Hong Zhang


Mesoporous hollow carbon microspheres (MHCM) with high specific surface area was prepared by using a core–shell structured mesoporous material of SiO2@SBA-15 as hard template, sucrose as carbon precursor via inverse replica method. Then, MHCM was sulfonated by diazonium coupling to synthesize sulfonated mesoporous hollow carbon microspheres (MHCM-DS). TEM images showed that hollow carbon microspheres were successfully formed. The small angle XRD patterns of SiO2@SBA-15 and MHCM confirmed these two materials were ordered mesoporous material. BET surface area and pore diameter distribution results indicated that MHCM had an area of 620 m2/g and a double mesoporous with 2.7 nm and 3.4 nm pore diameter, respectively. After the MHCM being sulfonated, the area was reduced to 446 m2/g. In addition, pore diameter distributions of 2.7 nm and 3.4 nm were weakened, and new pore diameter distributions in the range of 5–10 nm were appeared meanwhile. Surface acid amount of sulfonated carbon microspheres (2.8 mmol H+/g) was higher than unsulfonation carbon microspheres (2.2 mmol H+/g). Besides, the FTIR result also demonstrated the existing of –SO3H. The catalytic activity of MHCM-DS was observed for transesterification and epoxidation reaction, respectively. For transesterification reaction, the highest yield of fatty acid methyl esters was 93 wt% at 180 °C in 6 h with 0.6 g catalyst amount. For epoxidation reaction, when reaction temperature was 40 °C and reaction time was 6 h, conversion and yield could both reach up to 50%.


Mesoporous hollow carbon microspheres Sulfonation Transesterification Epoxidation Waste frying oil 



Financial support for this work from the National Natural Science Foundation of Ningxia (NZ17094), National Natural Science Foundation of China (21266001), Ningxia scientific and technological innovation leading personnel training (KJT2017006), the State Key Laboratory of Civil Committee Chemical Technology (2016HG03), Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project are gratefully acknowledged.


  1. 1.
    M. Hara, T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, S. Hayashi, K. Domen, Angew. Chem. Int. Ed. 43, 2955–2958 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Kuzminska, R. Backov, E.M. Gaigneaux, Appl. Catal. A 504(6), 11–16 (2015)CrossRefGoogle Scholar
  3. 3.
    J.Y. Fu, L.G. Chen, P.M. Lv, L.M. Yang, Z.H. Yuan, Fuel 154, 1–8 (2015)CrossRefGoogle Scholar
  4. 4.
    V.B. Kumar, I.N. Pulidindi, R.K. Mishra, A. Gedanken, ChemistrySelect 1(18), 5952–5960 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.O. Xiao, S.J. Hwang, D. Xie, T. Rea, S.I. Zones, A. Katz, ACS Catal. 5(5), 3108–3119 (2015)CrossRefGoogle Scholar
  6. 6.
    B. Ravi, B. Rajender, S. Palaniappan, J. Solid State Electrochem. 21, 1313–1322 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Chang, Y. Li, Y. Guo, Y. Hang, Z. Shou, Y. Bao, J. Porous Mater. 22(3), 629–634 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Wu, Y. Liu, R. Liu, L. Wang, Y. Lu, X. Xia, J. Colloid Interface Sci. 481, 75–81 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Wang, Y. Han, F. Wang, F. Chu, X. Chen, React. Kinet. Mech. Catal. 115(2), 679–690 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Yang, Y. Li, Q. Zhang, X. Sun, H. Fan, N. Xu, G. Li, Carbohydr. Polym. 131, 9–14 (2015)CrossRefGoogle Scholar
  11. 11.
    F.H. Alhassan, U. Rashid, Y.H. Taufiq-Yap, Fuel 142, 38–45 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 438(7065), 178 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Okamura, A. Takagaki, M. Toda, J.N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Chem Mater. 18, 3039–3045 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130, 12787–12793 (2008)CrossRefGoogle Scholar
  15. 15.
    M.S. Khayoon, B.H. Hameed, Bioresour. Technol. 102(19), 9229–9235 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wang, Z. Zhang, S. Jin, X. Shen, Fuel 192, 102–107 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Wang, R. Liu, M.M. Waje, Z. Chen, Y. Yan, K.N. Bozhilov, P. Feng, Chem. Mater. 19, 2395–2397 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Geng, G. Yu, Y. Wang, Y. Zhu, Appl. Catal. A 427– 428, 137–144 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Yue, W. Sun, J. Zhang, F. Wang, Y. Yang, C. Lu, Z. Wang, D. Rooney, K. Sun, J. Power Sources 331, 10–15 (2016)CrossRefGoogle Scholar
  20. 20.
    M.C. Hsiao, C.Y. Chang, L.J. Niu, F. Bai, L.J. Li, H.H. Shen, J.Y. Lin, T.W. Lin, J. Power Sources 345, 156–164 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Li, C. Xing, T. Hu, W.Z. Shen, J. Biobased Mater. Biol. 8, 21–26 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Wang, J. Zhang, S. Yang, Q. Sun, L. Zhu, Q. Wu, H. Zhang, X. Menga, F.S. Xiao, J. Mater. Chem A 33, 9422–9426 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Wu, Z.R. Yang, X.W. Li, Q.J. Sun, C. Jin, R.Z. Yang, J. Mater. Chem A 1, 9889–9896 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Zhao, S. Liu, K. Li, Z. Hu, Y. Yuan, L. Yan, H. Guo, X. Luo, Mol. Catal. 433, 193–201 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Song, C. Xing, B. Li, W. Shen, ChemistrySelect 2, 301–308 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Xiao, Y. Guo, X. Liang, C. Qi, J. Solid State Chem. 183, 1721–1725 (2010)CrossRefGoogle Scholar
  27. 27.
    I.F. Nata, C. Irawan, P. Mardina, C.K. Lee, J. Solid State Chem. 230, 163–168 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Mansir, S.H. Teo, I. Rabiu, Y. Hin, T. Yap, Chem. Eng. J. 347, 137–144 (2018)CrossRefGoogle Scholar
  29. 29.
    D. Pleissner, K.Y. Lau, C. Zhang, C.S. Lin, Chemsuschem 8(10), 1686–1691 (2015)CrossRefGoogle Scholar
  30. 30.
    E. Santacesaria, R. Tesser, M.D. Serio, R. Turcoa, V. Russoa, D. Verde, Chem. Eng. J. 173, 198–209 (2011)CrossRefGoogle Scholar
  31. 31.
    S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, J. Agric. Food Chem. 56(19), 8919–8925 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Chen, Q. Wang, T. Wang, J. Reinf. Plast. Comp. 32(15), 1136–1142 (2013)CrossRefGoogle Scholar
  33. 33.
    T.T. Tran, S. Kaiprommarat, S. Kongparakul, P. Reubroycharoen, G. Guan, M.H. Nguyen, C. Samart, Waste Manag. 52, 367–374 (2016)CrossRefGoogle Scholar
  34. 34.
    I.F. Nata, M.D. Putra, C. Irawan, C.K. Lee, Chin. J. Chem. Eng. 5(3), 2171–2175 (2017)Google Scholar
  35. 35.
    D. Song, S. An, B. Lu, Y. Guo, J. Leng, Appl. Catal. B 179, 445–457 (2015)CrossRefGoogle Scholar
  36. 36.
    Q. Yue, M. Wang, J. Wei, Y. Deng, T. Liu, R. Che, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 51(41), 10368–10372 (2012)CrossRefGoogle Scholar
  37. 37.
    D. Barrera, M. Dávila, V. Cornette, J.C.A.D. Oliveira, R.H. López, K. Sapag, Microporous Mesoporous Mater. 180, 71–78 (2013)CrossRefGoogle Scholar
  38. 38.
    J. He, K. Ma, J. Jin, Z. Dong, J. Wang, R. Li, Microporous Mesoporous Mater. 121, 173–177 (2009)CrossRefGoogle Scholar
  39. 39.
    S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122, 10712–10713 (2000)CrossRefGoogle Scholar
  40. 40.
    J. Lin, J. Dong, D. Chen, G. Chen, Science 46(8), 791–799 (2016)Google Scholar
  41. 41.
    S. Sinadinović-Fišer, M. Janković, O. Borota, Chem. Eng. Process. 62(6), 106–113 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Chang, J. Fu, Y. Tian, X. Dong, J. Phys. Chem. C 117(12), 6252–6258 (2013)CrossRefGoogle Scholar
  43. 43.
    R. Xing, Y. Liu, Y. Wang, L. Chen, H. Wu, Y. Jiang, M. He, P. Wu, Microporous Mesoporous Mater. 105(1), 41–48 (2007)CrossRefGoogle Scholar
  44. 44.
    H. Chen, H. Ruan, X. Lu, J. Fua, T. Langrish, X. Lua, Chem. Eng. J. 333, 434–442 (2018)CrossRefGoogle Scholar
  45. 45.
    V.K. Saini, M. Andrade, M.L. Pinto, A.P. Carvalho, J. Pires, Sep. Purif. Technol. 75, 366–376 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Suganuma, K. Nakajima, M. Kitano, H. Kato, A. Tamura, H. Kondo, S. Yanagawa, S. Hayashi, M. Hara, Microporous Mesoporous Mater. 143(2), 443–450 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanChina

Personalised recommendations