Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance

  • Shangyan Wen
  • Hongbo RenEmail author
  • Jiayi Zhu
  • Yutie Bi
  • Lin ZhangEmail author


The thermal-resistance Al2O3 aerogels and Al2O3 aerogel-SiO2 fiber composite by using inorganic aluminum salt as the precursor were synthesized by the sol–gel process. The method was straightforward, inexpensive, and safe. Furthermore, it was found that the as-prepared Al2O3 aerogel had high crystal phase transition temperature. As the heat treatment temperature increased to 900 °C, the crystal phase transition from γ-AlOOH to γ-Al2O3 occurred within the Al2O3 aerogel. Meanwhile, the Al2O3 aerogel-SiO2 fiber composite exhibited high Young’s modulus of tensile strength up to 6.59 MPa and low thermal conductivity at 35 °C (0.028 W/(m K)) and high temperature of 600 °C (0.033 W/(m K)). In addition, the results indicated that the Al2O3 aerogel-SiO2 fiber composite had the moderate hydrophobic property as well as mechanical property.


Al2O3 aerogel-SiO2 fiber composite Inorganic aluminum salt Thermal insulation Thermal stability 



This research was financially supported by Sichuan Science and Technology Program (No. 2018RZ0127), the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Nos. 17FKSY0111 and 18zxhk16) and the Doctoral Research Fund of Southwest University of Science and Technology (No. 16zx7142).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

10934_2018_700_MOESM1_ESM.docx (541 kb)
Supplementary material 1 (DOCX 540 KB)


  1. 1.
    L. Sorensen, G.F. Strouse, A.E.J.AM. Stiegman, Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv. Mater. 18, 1965–1967 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V.R. Virtudazo, P. Tingaut, M.M. Koebel, Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25, 2326–2334 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Li, B. Yalcin, B.N. Nguyen, M.A. Meador, Cakmak and interfaces, flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS App. Mater. Interfaces 1, 2491 (2009)CrossRefGoogle Scholar
  4. 4.
    J.H Robinson, Orbital debris impact damage to reusable launch vehicles. Int. J. Impact Eng 23, 783–794 (1998)CrossRefGoogle Scholar
  5. 5.
    R.G. Martinez, E. Goiti, G. Reichenauer, S. Zhao, M. Koebel, Barrio and buildings, thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy Buildings 128, 111–118 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Yamashita, T. Ogami, K. Kanamura, Hydrothermal synthesis of hollow Al2O3 microfibers for thermal insulation materials. Bull. Chem. Soc. Jpn. 91, 741–746 (2018)CrossRefGoogle Scholar
  7. 7.
    G. Wang, J. Zhao, H.M. Lun, G. Wang, K. Yu, C. Wang, C.B. Park, G.J. Zhao, Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chem. Eng. J. 325, 632–646 (2017)CrossRefGoogle Scholar
  8. 8.
    A.M. Abraham, S.V. Kumar, S.M. Alhassan, A.M. Abraham, S.V. Kumar, S.M. Alhassan, Porous sulphur copolymer for gas-phase mercury removal and thermal insulation. Chem. Eng. J. 332, 1–7 (2018)CrossRefGoogle Scholar
  9. 9.
    B. Wang, Y.R. Wang, Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats. Adv. Mater. Res. 332–334, 672–677 (2011)Google Scholar
  10. 10.
    A.R. Bunsell, M.H. Berger, Fine diameter ceramic fibres. J. Eur. Ceram. Soc. 20, 2249–2260 (2000)CrossRefGoogle Scholar
  11. 11.
    C. Simón-Herrero, A. Romero, J.L. Valverde, L.J.J. Sánchez-Silva, Hydroxyethyl cellulose/alumina-based aerogels as lightweight insulating materials with high mechanical strength. J. Mater. Sci. 53, 1556–1567 (2018)CrossRefGoogle Scholar
  12. 12.
    Q.F. Xu, H.B. Ren, J.Y. Zhu et al., Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 469, 14–18 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels. Science 255, 971–972 (1992)CrossRefPubMedGoogle Scholar
  14. 14.
    T.Y. Wei, T.F. Chang, S.Y. Lu, A.C.S. Chang, Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J. Am. Ceram. Soc. 90, 2003–2007 (2010)CrossRefGoogle Scholar
  15. 15.
    L.J. Wang, S.Y. Zhao, M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113, 485–490 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)CrossRefGoogle Scholar
  17. 17.
    S. Keshipour, M.J.C. Khezerloo, Au-dimercaprol functionalized cellulose aerogel: synthesis, characterization and catalytic application: Heterogeneous biocatalysis. Appl. Organomet. Chem. 32, e4255 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Fu, G. Wang, X. Ming, X. Liu, B. Hou, T. Mei, J. Li, J. Wang, X.J.C. Wang, Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon 130, 250–256 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Nazeran, S. J.J.J.o.N.-C, Moghaddas, Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application. J. Non-Cryst. Solids 461, 1–11 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Cao, L. Ren, X.J. Li, Synthesis of high strength monolithic alumina aerogels at ambient pressure. Res. Adv. 5, 18025–18028 (2015)Google Scholar
  21. 21.
    A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 34, 4243–4265 (2002)CrossRefGoogle Scholar
  22. 22.
    J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications. ACS App. Mater. Int. 3, 613–626 (2011)CrossRefGoogle Scholar
  23. 23.
    S.S. Prakash, C.J. Brinker A.J.J. Hurd, Silica aerogel films at ambient pressure. J. Non-Cryst. Solids 190, 264–275 (1995)CrossRefGoogle Scholar
  24. 24.
    F. Shi, L. Wang, J. Liu, Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60, 3718–3722 (2006)CrossRefGoogle Scholar
  25. 25.
    N. Hüsing, U.J.A.C.I.E. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)CrossRefGoogle Scholar
  26. 26.
    X. Du, F. Kleitz, X. Li, H. Huang, X. Zhang, S.Z.J.A.FM. Qiao, Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical applications. Adv. Funct. Mater. 28, 1707325 (2018)CrossRefGoogle Scholar
  27. 27.
    X. Du, X. Li, L. Xiong et al., Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91, 90–127 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Komarneni, R. Roy, U. Selvaraj, P.B. Malla, Research, nanocomposite aerogels: the SiO2–Al2O3 system. J. Mater. Res. 8, 3163–3167 (1993)CrossRefGoogle Scholar
  29. 29.
    M. Li, H. Jiang, D. Xu et al., Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. J. Non-Cryst. Solids 452, 187–193 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Ji, Q. Zhou, G. Qiu, B. Peng, M. Guo, M.J.S. Zhang, Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying. J. Non-Cryst. Solids 471, 160–168 (2017)CrossRefGoogle Scholar
  31. 31.
    J.F. Poco, N.-C.S. Hrubesh, Synthesis of high porosity, monolithic alumina aerogels. J. Non-Cryst. Solids 285, 57–63 (2001)CrossRefGoogle Scholar
  32. 32.
    T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, J.H.S. Satcher, Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater. 17, 395–401 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Zhang, W. Cai, J. Yu et al., A facile one-pot cation-anion double hydrolysis approach to the synthesis of supported MgO/γ-Al2O3 with enhanced adsorption performance towards CO2. Chem. Eng. J. 310, 216–225 (2017)CrossRefGoogle Scholar
  34. 34.
    G. Zu, J. Shen, X. Wei, X. Ni, Z. Zhang, J. Wang, Preparation and characterization of monolithic alumina aerogels. J. Non-Cryst. Solids 357, 2903–2906 (2011)CrossRefGoogle Scholar
  35. 35.
    L. Xu, Y. Jiang, J. Feng et al., Infrared-opacified Al2O3–SiO2, aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram. Int. 41, 437–442 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Zhang, N. Jiang, X.J. Duan et al., Synthesis and characterization of Al2O3–SiO2 hybrid aerogels by a one-pot sol–gel method. New Carb. Mater. 32, 258–264 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Wu, G. Shao, S. Cui, L. Wang, X.J.C.I. Shen, Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram. Int. 42, 874–882 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Zhang, C. Ye, B. Wang, Novel Al2O3-SiO2, aerogel/porous zirconia composite with ultra-low thermal conductivity. J. Porous Mater. 25, 171–178 (2018)CrossRefGoogle Scholar
  39. 39.
    G. Zu, J. Shen, L. Zou, W. Wang, Y. Lian, Z. Zhang, Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 25, 4757–4764 (2013)CrossRefGoogle Scholar
  40. 40.
    J.T. Zhang, J.W. Jiang, C.C. Zhao, Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRefGoogle Scholar
  41. 41.
    M.M. Liu, J.C. Liu, M.C. Wang, Z.Q.J. Yun, Preparation and properties of SiO2/Al2O3–SiO2 fiber mat composite materials. Key Eng. Mater. 680, 129–132 (2016)Google Scholar
  42. 42.
    J. Liu, H. Xu, W. Shen, X. Pan, Y.J.J.T.A. Xiang. Calorimetry, TG study of the dispersion threshold of Mn2O3 on γ-Al2O3. J. Therm. Anal. Calorim. 58, 309–315 (1999)CrossRefGoogle Scholar
  43. 43.
    Y.M. Kim, G.H. Rhee, C.H. Ko, K.H. Kim, K.Y. Jung, J.M. Kim. Park and nanotechnology, catalytic pyrolysis of Pinus densiflora over mesoporous Al2O3 catalysts. J. Nanosci. Nanotechol. 18, 6300–6303 (2018)CrossRefGoogle Scholar
  44. 44.
    C. Wu, W. Yuan, Y. Huang, Y. Xia, H. Yang, H. Wang, X.J.C.L. Liu, Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic γ-Al. Catal. Lett. 147, 953–963 (2017)CrossRefGoogle Scholar
  45. 45.
    X. Wang, J. Wang, H.J.J.o.MP. Wang, A heat-resistant organic adhesive for joining Al2O3 ceramics in air and argon atmospheres. J. Manuf. Process. 26, 67–73 (2017)CrossRefGoogle Scholar
  46. 46.
    H.B. Zhao, M. Chen, H.B. Chen, Thermally insulating and flame-retardant polyaniline/pectin aerogels. ACS Sustainable Chem. Eng. 5, 7012–7019 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Yao, N. Wang, W. Hu et al., Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2, nanosheets for high performance oxygen evolution reaction. Appl. Catal. B. 233, 226–233 (2018)CrossRefGoogle Scholar
  48. 48.
    N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S.J.C.E.J. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018)CrossRefGoogle Scholar
  49. 49.
    N. Wang, H.D. Song, H.B. Ren, J.Y. Chen, M.Q. Yao, W.Y. Huang, W.C. Hu, Komarneni partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem. Eng. J. 358, 531–539 (2019)CrossRefGoogle Scholar
  50. 50.
    H. Chen, X.Y. Sui, C.L. Zhou et al., Preparation and characterization of mullite fiber-reinforced Al2O3–SiO2 aerogel composites. Key Eng. Mater. 697, 360–363 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-friendly Energy Materials, School of Material Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.State Key Laboratory of Environment-friendly Energy Materials, School of ScienceSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  3. 3.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangPeople’s Republic of China

Personalised recommendations