Advertisement

Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery

  • Xiang Ke
  • Xiaoqiong Song
  • Nianqiao Qin
  • Yingrun Cai
  • Fei Ke
Article
  • 36 Downloads

Abstract

Drug delivery carrier for targeted and controlled drug release is very important but challenging. In this work, a nano-sized metal–organic frameworks (MOFs)-based magnetic core–shell nanoparticles (NPs) has been designed for targeted drug delivery. Fe3O4@MIL-100(Fe) magnetic NPs were successfully prepared by a facile step-by-step assembly method. By the combination of the high porosity of MOFs shell and the magnetic characteristics of Fe3O4 core, making Fe3O4@MIL-100(Fe) magnetic NPs as an excellent drug delivery system. Significantly, the anti-inflammatory drug Ibuprofen (IBU) was effectively loaded on the magnetic NPs with a loading capacity of 0.31 g g−1, and it took as long as 70 h to release IBU completely in PBS buffer solution at 37 °C. This work demonstrates that the nano-sized MOFs-based magnetic NPs are promising candidates for targeted drug delivery applications.

Keywords

Metal–organic frameworks Porous materials Magnetic nanoparticles Core–shell Drug delivery 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 21501003), Natural Science Foundation of Anhui Province (1608085QB27), and China Postdoctoral Science Foundation funded project (2015M581973).

References

  1. 1.
    H. Li, N. Lv, X. Li, B. Liu, J. Feng, X. Ren, T. Guo, D. Chen, J.F. Stoddart, R. Gref, J. Zhang, Nanoscale 9, 7454–7463 (2017)CrossRefGoogle Scholar
  2. 2.
    M.-X. Wu, Y.-W. Yang, Adv. Mater. 29, 1606134 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Szewczyk, M. Prokopowicz, Mater. Lett. 227, 136–140 (2018)CrossRefGoogle Scholar
  4. 4.
    J.M. Lee, H. Park, K.T. Oh, E.S. Lee, Int. J. Pharm. 547, 377–384 (2018)CrossRefGoogle Scholar
  5. 5.
    D.J. Kang, H. Bararnia, S. Anand, ACS Appl. Mater. Interfaces 10, 21746–21754 (2018)CrossRefGoogle Scholar
  6. 6.
    A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats, K.W. Chapman, J.T. Hupp, O.K. Farha, J. Am. Chem. Soc. 137, 7488–7494 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Yang, S. Yuan, L. Zou, H. Drake, Y. Zhang, J. Qin, A. Alsalme, H.-C. Zhou, Angew. Chem. Int. Ed. 57, 3927–3932 (2018)CrossRefGoogle Scholar
  8. 8.
    O. Yassine, O. Shekhah, A.H. Assen, Y. Belmabkhout, K.N. Salama, M. Eddaoudi, Angew. Chem. Int. Ed. 55, 15879–15883 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232–1268 (2012)CrossRefGoogle Scholar
  10. 10.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 9, 172–178 (2010)CrossRefGoogle Scholar
  11. 11.
    K.J. Hartlieb, D.P. Ferris, J.M. Holcroft, I. Kandela, C.L. Stern, M.S. Nassar, Y.Y. Botros, J.F. Stoddart, Mol. Pharmaceutics 14, 1831–1839 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Hashemipour, H.A. Panahi, J. Mol. Liq. 243, 102–107 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Ke, Y.-P. Yuan, L.-G. Qiu, Y.-H. Shen, A.-J. Xie, J.-F. Zhu, X.-Y. Tian, L.-D. Zhang, J. Mater. Chem. 21, 3843–3848 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Lajevardi, M.H. Sadr, M.T. Yaraki, A. Badiei, M. Armaghan, New J. Chem. 42, 9690–9701 (2018)CrossRefGoogle Scholar
  15. 15.
    M.-X. Wu, J. Gao, F. Wang, J. Yang, N. Song, X. Jin, P. Mi, J. Tian, J. Luo, F. Liang, Y.-W. Yang, Small 14, 1704440 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, M. Zhou, S. Li, Z. Li, J. Li, A. Wu, G. Li, F. Li, X. Guan, Small 10, 2927–2936 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, F. Xia, Y. Yang, B. Gong, A. Xie, Y. Shen, M. Zhu, J. Mater. Chem. B 5, 8600–8606 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Bhattacharjee, S. Gumma, M.K. Purkait, Microporous Mesoporous Mater. 259, 203–210 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Ke, L.-G. Qiu, Y.-P. Yuan, X. Jiang, J.-F. Zhu, J. Mater. Chem. 22, 9497–9500 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Wang, M. Zheng, Z. Xie, J. Mater. Chem. B 6, 707–717 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Guo, D. Li, L. Zhang, J. Li, E. Wang, Biomaterials 30, 1881–1889 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Deng, C. Deng, D. Qi, C. Liu, J. Liu, X. Zhang, D. Zhao, Adv. Mater. 21, 1377–1382 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Férey, Chem. Commun. (2007).  https://doi.org/10.1039/B704325B CrossRefGoogle Scholar
  24. 24.
    P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 45, 5974–5978 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiang Ke
    • 1
  • Xiaoqiong Song
    • 2
  • Nianqiao Qin
    • 3
  • Yingrun Cai
    • 3
  • Fei Ke
    • 3
  1. 1.Department of PharmacyThe First Affiliated Hospital of University of Science and Technology of China and Anhui Provincial Cancer HospitalHefeiPeople’s Republic of China
  2. 2.Hefei Center for Disease Control and PreventionHefeiPeople’s Republic of China
  3. 3.Department of Applied ChemistryAnhui Agricultural UniversityHefeiPeople’s Republic of China

Personalised recommendations