Advertisement

Mesoporous support designed for DhaA adsorption with improved stability

  • He Zheng
  • Jin-Yi Zhong
  • Yan Cui
  • Zhe Zhang
  • Chong-Lin Zhao
  • Yuan-Zhong Zhao
  • Yong-Chao Zheng
  • Xuan Guo
Article

Abstract

Physical adsorption by mesoporous silica support has been widely used as a stabilization strategy of enzymes. The characteristics of support influence loading amount, activity and stability of enzymes. Considering size and charge on surface of DhaA, a suitable support based on molecular sieve SBA-15 was designed. The preparation process included hydrothermal synthesis, pore expansion and surface functionalization. An amino-modified support with disordered structure was finally achieved; whose pore size and window size were 5.6 nm and 3.8 nm respectively. The high loading and low leakage amount of DhaA were achieved by being adsorbed in this designed support. The catalytic activity and conformation of DhaA were still kept after adsorption. More importantly, the adsorbed DhaA had significant stability improvement in extreme denaturation conditions such as low pH, 3M of urea, 40% DMSO, and 30 days storage at room temperature. All the results suggested that it’s feasible to enhance the stability of enzymes by designing the appropriate adsorption support.

Keywords

Support design DhaA Mesoporous silica Adsorption Stability 

References

  1. 1.
    T. Koudelakova, S. Bidmanova, P. Dvorak, P.A. Pavelka, R. Chaloupkova, Z. Prokop, J. Damborsky, Biotechnol. J. 8, 32–45 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Nagata, Y. Ohtsubo, M. Tsuda, Appl. Microbiol. Biotechnol. 99, 9865–9881 (2015)CrossRefGoogle Scholar
  3. 3.
    P.S. Harvey (ed.), Enzymatic Degradation of HD (Edgewood Chemical Biological Center, Aberdeen Proving Ground, 2002)Google Scholar
  4. 4.
    S. Bidmanova, M.S. Steiner, M. Stepan, K. Vymazalova, M.A. Gruber, A. Duerkop, J. Damborsky, Z. Prokop, O.S. Wolfbeis, Anal. Chem. 88, 6044–6049 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Guo, L. Dong, J.Q. Liu, Z.Y. Dong, J.Y. Zhong, L.C. Kong, Environ. Chem. 34, 1363–1370 (2015)Google Scholar
  6. 6.
    Y.Z. Zhao, J.Y. Zhong, N. Guo, Z.Y. Dong, J. Lin, Chin. J. Appl. Environ. Biol. 23, 714–718 (2017)Google Scholar
  7. 7.
    V. Stepankova, J. Damborsky, R. Chaloupkova, Biotechnol. J. 8, 633–752 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Koudelakova, R. Chaloupkova, J. Brezovsky, Z. Prokop, E. Sebestova, M. Hesseler, M. Khabiri, M. Plevaka, D. Kulik, I.K. Smatanova, P. Rezacova, R. Ettrich, U.T. Bornscheuer, J. Damborsky, Angew. Chem. Int. Ed. 52, 1959–1963 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Bednar, K. Beerens, E. Sebestova, J. Bendl, S. Khare, R. Chaloupkova, Z. Prokop, J. Brezovsky, D. Baker, J. Damborsky, PLoS Comput. Biol. 11, e1004556 (2015)CrossRefGoogle Scholar
  10. 10.
    B.C. Dravis, P.E. Swanson, A.J. Russell, Biotechnol. Bioeng. 75, 416–423 (2001)CrossRefGoogle Scholar
  11. 11.
    P. Dvorak, S. Bidmanova, J. Damborsky, Z. Prokop, Envion. Sci. Technol. 48, 6859–6866 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.Z. Zhao, W.L. Yu, H. Zheng, X. Guo, N. Guo, T. Hu, J.Y. Zhong, J. Biotechnol. 254, 25–33 (2017)CrossRefGoogle Scholar
  13. 13.
    C.G. Galan, A.B. Murcia, R.F. Lafuente, R.C. Rodrigues, Adv. Synth. Catal. 353, 2885–2904 (2011)CrossRefGoogle Scholar
  14. 14.
    C.H. Lee, T.S. Lin, C.Y. Mou, Nano Today 4, 165–179 (2009)CrossRefGoogle Scholar
  15. 15.
    D.I. Fried, F.J. Brieler, M. Froba, ChemCatChem 5, 862–884 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Moritz, M. Geszke-Moritz, Mater. Sci. Eng. C 49, 114–151 (2015)CrossRefGoogle Scholar
  17. 17.
    C.S. Cai, Y.Q. Gao, Y. Liu, N.J. Zhong, N. Liu, Food Chem. 212, 205–212 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Takimoto, T. Shiomi, K. Ino, T. Tsunoda, A. Kawai, F. Mizukami, Microporous Mesoporous Mater. 116, 601–606 (2008)CrossRefGoogle Scholar
  19. 19.
    L.W. Kriel, V.L. Jimenez, K.J. Balkus, J. Mol. Catal. B 10, 453–469 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Aguila, R.V. Duhalt, C. Covarrubias, G. Pecchi, J.B. Alderete, J. Mol. Catal. B 70, 81–87 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Zynek, J. Bryjak, K. Szymanska, A.B. Jarzebski, Biotechnol. Bioprocess Eng. 16, 180–189 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Li, G.F. Yin, Y. Ding, X.M. Liao, X.C. Chen, Z.B. Huang, Y.D. Yao, X.M. Pu, J. Biosci. Bioeng. 116, 555–561 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Ahmadi, M. Farokhi, P. Padidar, M. Falahati, Int. J. Mol. Sci. 16, 17289–17302 (2015)CrossRefGoogle Scholar
  24. 24.
    I. Iwasaki, S. Utsumi, K. Hagino, T. Ozawa, Bull. Chem. Soc. Jpn. 29, 860–864 (1956)CrossRefGoogle Scholar
  25. 25.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)CrossRefGoogle Scholar
  26. 26.
    Q. Wei, Y.L. Ding, Z.R. Nie, X.G. Liu, Q.Y. Li, J. Membr. Sci. 466, 114–122 (2014)CrossRefGoogle Scholar
  27. 27.
    Q. Wei, Z.X. Zhong, Z.R. Nie, H.Q. Chen, Q.Y. Li, C.J. Li, Chin. J. Inorg. Chem. 24, 130–137 (2008)Google Scholar
  28. 28.
    S.M.L. Santos, J.A. Cecilia, E.V. Garcia, I.J.S. Junior, E.R. Castellon, D.C.S. Azevedo, Microporous Mesoporous Mater. 232, 53–64 (2016)CrossRefGoogle Scholar
  29. 29.
    L.T.I. Zivkovic, L.S. Zivkovic, B.M. Babic, M.J. Koukunesoski, B.M. Jokic, I.M. Karadzic, Biochem. Eng. J. 93, 73–83 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Dreifke, D.I. Fried, F.J. Brieler, M. Froba, J. Mol. Catal. B 132, 5–15 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Devesh, K. Suman, A.M. Kayastha, PLoS ONE 7, 304–309 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of Chemical DefenseBeijingChina
  2. 2.State Key Lab of NBC Protection for CivilianBeijingChina

Personalised recommendations