Advertisement

Control of pore size in shell of hollow silica–alumina composite spheres for hydrolytic dehydrogenation of ammonia borane

  • Tetsuo Umegaki
  • Ryota Ogawa
  • Shinobu Ohki
  • Masataka Tansho
  • Tadashi Shimizu
  • Yoshiyuki Kojima
Article
  • 1 Downloads

Abstract

In the present study, we attempted to control the shell pore size of hollow spheres and investigated the resulting effect on their acidic properties and activity for the acid-promoted hydrolytic dehydrogenation of ammonia borane. Silica shells were formed on polystyrene template particles via sol–gel method, followed by calcination. For controlling the pore structure, surfactants with various molecular lengths (decyltrimethylammonium bromide (DeTAB), cethyltrimethylammonium bromide (CTAB), and stearyltrimethylammonium bromide (STAB)) were used. The shells of all the hollow spheres included monodispersed and well-ordered pores, and the pore size increased with increase in the molecular length of the surfactant. In particular, the hollow spheres prepared with CTAB and STAB consisted of numerous well-ordered mesopores with sharp peaks centered at approximately 2.4 and 2.8 nm, respectively. The molar ratios of the hydrolytically evolved hydrogen to the initial NH3BH3 in the presence of the hollow spheres prepared with DeTAB, CTAB, and STAB were 0.9, 3.0, and 2.7, respectively, which indicated the stoichiometric amount of hydrogen was evolved in the presence of the hollow spheres prepared with CTAB and STAB. The amount and rate of hydrogen evolution depended on the pore structure, and the hollow spheres with well-ordered and appropriate-sized mesopores in the shells showed a large amount and high rate of hydrogen evolution.

Keywords

Silica–alumina Mesoporous hollow spheres Surfactants Molecular length Hydrolytic dehydrogenation of ammonia borane 

Notes

Acknowledgements

This work was supported by NIMS and University of Tokyo microstructural characterization platform as a program of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful to Mr. Deguchi and Ms. Wada for using the solid-state NMR measurement, and Mr. Ito for using the TEM measurement.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    W. Meier, Chem. Soc. Rev. 29, 295–303 (2000)CrossRefGoogle Scholar
  2. 2.
    F. Caruso, Chem. Eur. J. 6, 413–419 (2000)CrossRefGoogle Scholar
  3. 3.
    W. Wei, G.H. Ma, G. Hu, D. Yu, T. Mcleish, Z.G. Su, Z.Y. Shen, J. Am. Chem. Soc. 130, 15808–15810 (2008)CrossRefGoogle Scholar
  4. 4.
    S.K. Moon, M.J. Oh, D.h. Paik, T.K. Ryu, K. Park, S.E. Kim, J.H. Park, J.H. Kim, S.W. Choi, Macromol. Rapid Commun. 34, 399–405 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Small 6, 471–478 (2010)CrossRefGoogle Scholar
  6. 6.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18, 2325–2359 (2006)CrossRefGoogle Scholar
  7. 7.
    A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Angew. Chem. Int. Ed. 44, 4391–4395 (2005)CrossRefGoogle Scholar
  8. 8.
    K.T. Lee, Y.S. Jung, S.M. Oh, J. Am. Chem. Soc. 125, 5652–5653 (2003)CrossRefGoogle Scholar
  9. 9.
    F. Gyger, M. Hübner, C. Feldmann, N. Barsan, U. Weimar, Chem. Mater. 22, 4821–4827 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo, S. Wang, J. Mater. Chem. 20, 6453–6459 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Jiang, Q. Sun, L. Zhang, Z. Jiang, J. Mater. Chem. 19, 9068–9074 (2009)CrossRefGoogle Scholar
  12. 12.
    Z. Wang, L. Wu, M. Chen, S. Zhou, J. Am. Chem. Soc. 131, 11276–11277 (2009)CrossRefGoogle Scholar
  13. 13.
    D.C. Hyun, P. Lu, S.I. Choi, U. Jeong, Y. Xia, Angew. Chem. Int. Ed. 52, 10468–10471 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Li, J. Xue, Langmuir 27, 3229–3232 (2011)CrossRefGoogle Scholar
  15. 15.
    S.H. Im, U. Jeong, Y. Xia, Nat. Mater. 4, 671–675 (2005)CrossRefGoogle Scholar
  16. 16.
    X. Xu, S.A. Asher, J. Am. Chem. Soc. 126, 7940–7945 (2004)CrossRefGoogle Scholar
  17. 17.
    G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, J. Mater. Chem. 21, 887–892 (2011)CrossRefGoogle Scholar
  18. 18.
    Q. Chen, D.W. Bahnemann, J. Am. Chem. Soc. 122, 970–971 (2000)CrossRefGoogle Scholar
  19. 19.
    J. Kirkland, F. Truszkowski, C. Dilks Jr., G. Engel, J. Chromatogr. A 890, 3–13 (2000)CrossRefGoogle Scholar
  20. 20.
    J.B. Qu, X.Z. Wan, Y.Q. Zhai, W.Q. Zhou, Z.G. Su, G.H. Ma, J. Chromatogr. A 1216, 6511–6516 (2009)CrossRefGoogle Scholar
  21. 21.
    S.E. Kim, J.H. Park, Y.W. Cho, H. Chung, S.Y. Jeong, E.B. Lee, I.C. Kwon, J. Controlled Release 91, 365–374 (2003)CrossRefGoogle Scholar
  22. 22.
    R. Langer, D.A. Tirrell, Nature 428, 487–492 (2004)CrossRefGoogle Scholar
  23. 23.
    S. Hollister, Nat. Mater. 4, 518–524 (2005)CrossRefGoogle Scholar
  24. 24.
    U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395, 583–585 (1998)CrossRefGoogle Scholar
  25. 25.
    J.B. Fan, C. Huang, L. Jiang, S. Wang, J. Mater. Chem. B 1, 2222–2235 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Toyama, S. Ohki, M. Tansho, T. Shimizu, T. Umegaki, Y. Kojima, J. Jpn. Inst. Energy 95, 480–486 (2016)CrossRefGoogle Scholar
  27. 27.
    N. Toyama, S. Ohki, M. Tansho, T. Shimizu, T. Umegaki, Y. Kojima, J. Sol–Gel. Sci. Technol. 82, 92–100 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Umegaki, R. Ogawa, N. Toyama, S. Ohki, M. Tansho, T. Shimizu, Y. Kojima, Inorg. Chem. Front. 4, 1568–1574 (2017)CrossRefGoogle Scholar
  29. 29.
    N. Toyama, S. Ohki, M. Tansho, T. Shimizu, T. Umegaki, Y. Kojima, Int. J. Hydrogen Energy 42, 22318–22324 (2017)CrossRefGoogle Scholar
  30. 30.
    N. Toyama, R. Ogawa, H. Inoue, S. Ohki, M. Tansho, T. Shimizu, T. Umegaki, Y. Kojima, J. Adv. Ceram. 6, 368–375 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Iwamoto, Y. Tanaka, N. Sawamura, S. Namba, J. Am. Chem. Soc. 125, 13032–13033 (2003)CrossRefGoogle Scholar
  32. 32.
    T. Yamamoto, T. Tanaka, T. Funabiki, S. Yoshida, J. Phys. Chem. B 102, 5830–5839 (1998)CrossRefGoogle Scholar
  33. 33.
    U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131–149 (1999)CrossRefGoogle Scholar
  34. 34.
    M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961–1968 (2000)CrossRefGoogle Scholar
  35. 35.
    T. Tsoncheva, L. Ivanova, J. Rosenholm, M. Linden, Appl. Catal. B: Environ. 89, 365–374 (2009)CrossRefGoogle Scholar
  36. 36.
    X. Fang, Z. Liu, M.F. Hsieh, M. Chen, P. Liu, C. Chen, N. Zheng, ACS Nano 6, 4434–4444 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Sakthivel, S.E. Dapurkar, N.M. Gupta, S.K. Kulshreshtha, P. Selvam, Microporous Mesoporous Mater. 65, 177–187 (2003)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, N. Lang, A. Tuel, Microporous Mesoporous Mater. 93, 46–54 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tetsuo Umegaki
    • 1
  • Ryota Ogawa
    • 1
  • Shinobu Ohki
    • 2
  • Masataka Tansho
    • 2
  • Tadashi Shimizu
    • 2
  • Yoshiyuki Kojima
    • 1
  1. 1.College of Science & TechnologyNihon UniversityTokyoJapan
  2. 2.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations