Advertisement

Optimized processing of defect-free porous alumina by gel casting process

  • Soumya Devavarapu 
  • Santanu Bhattacharyya
Article
  • 3 Downloads

Abstract

Porous alumina ceramics was fabricated by direct foaming method using a natural foaming agent shikakai of Acacia Mimosaceae family. Binders affected the foam stability and stable foams were obtained with 2 wt% PVA wrt alumina. The dispersant concentration (0.5%) and the milling time (12 h) were optimized. The slurries for gel casting were prepared by varying solid loading, saponin and surfactant concentration at a constant PVA content. At low saponin content (0.07–0.4%), cracked and drained samples formed. Both cracking and drainage defects were minimized on increasing saponin to 2%. 1.5% Glycerol addition resulted in defect-free samples which could be correlated with the lowering of the shear modulus of the slurry with glycerol addition. The microstructure of the green and sintered samples show that porosity and interconnectivity improved with saponin and glycerol addition. In defect-free samples, the highest total porosity was 51.23 ± 4.25% in 30% solid loading samples. The maximum pore size was 67.16 ± 45.6 µm. Both porosity and pore size decreased with increase in solid loading and saponin content.

Keywords

Gel casting Alumina Foaming Porosity Microstructure 

Notes

Acknowledgements

The authors thankfully acknowledge the help of Dr. Paritosh Chaudhuri and Mr. Aroh Shrivastava of Institute for Plasma Research, Ahmedabad for the Hg-porosimetry study and analysis.

References

  1. 1.
    S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, J. Am. Ceram. Soc. 91, 2829 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Scheffler, P. Colombo (eds.), Cellular Ceramics: Structure, Manufacturing, Properties and Application (Wiley-VCH, Weinheim, 2005), p. 645Google Scholar
  3. 3.
    A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Zhao, S. Shimai, G. Zhou, J. Zhang, S. Wang, ‎J. Colloids Surf. A 537, 210 (2018)CrossRefGoogle Scholar
  5. 5.
    F.S. Ortega, P. Sepulveda, M.D.M. Innocentini, V.C. Pandolfelli, Am. Ceram. Soc. Bull. 80, 37 (2001)Google Scholar
  6. 6.
    S. Barg, C. Soltmann, M. Andrade, D. Koch, G. Grathwohl, J. Am. Ceram. Soc. 91, 2823 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Celani, S. Blackburn, M.J. Simmons, L.M. Holt, E.H. Stitt, ‎J. Colloids Surf. 536, 104 (2018)CrossRefGoogle Scholar
  8. 8.
    B.S. Murray, Ettelaie, Curr. Opin. Colloid Interface Sci. 9, 314 (2004)CrossRefGoogle Scholar
  9. 9.
    S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Langmuir 6, 6327 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Kaptay, Colloids Surf. A 282, 387 (2006)CrossRefGoogle Scholar
  11. 11.
    U.T. Gozenbach, A.R. Studart, E. Tervort, L.J. Gauckler, J. Am. Ceram. Soc. 90, 16 (2007)CrossRefGoogle Scholar
  12. 12.
    M.V. Twigg, J. Richardson, Ind. Eng. Chem. Res. 46, 4166 (2007)CrossRefGoogle Scholar
  13. 13.
    B.P. Binks, S.O. Lumsdon, Langmuir 16, 8622 (2000)CrossRefGoogle Scholar
  14. 14.
    D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 1999)Google Scholar
  15. 15.
    D.J. Shaw, Introduction to Colloid and Surface Chemistry (Butterworths, London, 1996)Google Scholar
  16. 16.
    B.P. Binks, P.D.I. Fletcher, Langmuir 17, 4708 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Simovic, C.A. Prestidge, Langmuir 19, 3785 (2003)CrossRefGoogle Scholar
  18. 18.
    P. Finkle, H.D. Draper, J.H. Hildebrand, J. Am. Chem. Soc. 45, 2780 (1932)CrossRefGoogle Scholar
  19. 19.
    J.H. Schulman, J. Leja, Trans. Faraday Soc. 50, 598 (1954)CrossRefGoogle Scholar
  20. 20.
    D. Fuks, G.E. Shter, M.M. Lahav, G.S. Grader, J. Am. Ceram. Soc. 93, 3632 (2010)CrossRefGoogle Scholar
  21. 21.
    T. Takahashi, H. Munstedt, P. Colombo, M. Modesti, J. Mater. Sci. 36, 1627 (2001)CrossRefGoogle Scholar
  22. 22.
    X. Bao, M.R. Nangrejo, M.J. Edirisinghe, J. Mater. Sci. 34, 2495 (1999)CrossRefGoogle Scholar
  23. 23.
    E. Williams, J.R.G. Evans, J. Mater. Sci. 31, 559 (1996)CrossRefGoogle Scholar
  24. 24.
    Y.W. Kim, K.H. Lee, S.H. Lee, C.B. Park, J. Ceram. Soc. Jpn. 111, 863 (2003)CrossRefGoogle Scholar
  25. 25.
    P. Sepulveda, J.R. Jones, L.L. Hench, J. Biomed. Mater. Res. 59, 340 (2002)CrossRefGoogle Scholar
  26. 26.
    G.T. Chandrappa, N. Steunou, J. Livage, Nature 416, 702 (2002)CrossRefGoogle Scholar
  27. 27.
    K. Prabhakaran, N.M. Gokhale, S.C. Sharma, R. Lal, J. Am. Ceram. Soc. 88, 2600 (2005)CrossRefGoogle Scholar
  28. 28.
    R. Mouazer, I. Thijs, S. Mullens, J. Luyten, Adv. Eng. Mater. 6, 340 (2004)CrossRefGoogle Scholar
  29. 29.
    J.G.P. Binner, J. Reichert, J. Mater. Sci. 31, 5717 (1996)CrossRefGoogle Scholar
  30. 30.
    F.S. Ortega, J.A. Rodrigues, V.C. Pandolfelli, Am. Ceram. Soc. Bull. 83, 9501 (2004)Google Scholar
  31. 31.
    F.S. Ortega, F.A.O. Valenzuela, C.H. Scuracchio, V.C. Pandolfelli, J. Eur. Ceram. Soc. 23, 75 (2003)CrossRefGoogle Scholar
  32. 32.
    C. Tuck, J.R.G. Evans, J. Mater. Sci. Lett. 18, 1003 (1999)CrossRefGoogle Scholar
  33. 33.
    U.T. Gozenbach, A.R. Studart, E. Tervort, L.J. Gauckler, Angew. Chem. Int. Ed. 45, 3526 (2006)CrossRefGoogle Scholar
  34. 34.
    S. Dhara, P. Bhargava, J. Am. Ceram. Soc. 86, 1645 (2003)CrossRefGoogle Scholar
  35. 35.
    M. Pradhan, P. Bhargava, J. Eur. Ceram. Soc. 28, 3049 (2008)CrossRefGoogle Scholar
  36. 36.
    M. Lombardi, V. Naglieri, J.M. Tulliani, L. Montanaro, J. Porous Mater. 16, 393 (2009)CrossRefGoogle Scholar
  37. 37.
    O.O. Omatete, M.A. Janney, R.A. Strehlow, Am. Ceram. Bull. 70, 1641 (1991)Google Scholar
  38. 38.
    R. Gilissen, J.P. Erauw, A. Smolders, E. Vanswijgenhoven, J. Luyten, Mater. Des. 21, 251 (2000)CrossRefGoogle Scholar
  39. 39.
    S.M. Olhero, G. Tari, M.A. Coimbra, J.M.F. Ferreira, J. Eur. Ceram. Soc. 20, 423 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Adolfsson, J. Am. Ceram. Soc. 89, 1897 (2006)CrossRefGoogle Scholar
  41. 41.
    G. Tari, Am. Ceram. Soc. Bull. 82, 42 (2003)Google Scholar
  42. 42.
    L.J. Vandeperre, A.M. De Wilde, J. Luyten, J. Mater. Process. Technol. 135, 312 (2003)CrossRefGoogle Scholar
  43. 43.
    Y. Jia, Y. Kannoa, Z. Xie, J. Eur. Ceram. Soc. 22, 1911 (2002)CrossRefGoogle Scholar
  44. 44.
    K. Cai, Y. Huang, J.L. Yang, J. Eur. Ceram. Soc. 25, 1089 (2005)CrossRefGoogle Scholar
  45. 45.
    M.N. Rahaman, Ceramic Processing (Taylor & Francis, New York, 2007), pp. 287–291Google Scholar
  46. 46.
    M. Pradhan, P. Bhargava, J. Am. Ceram. Soc. 88, 216 (2005)CrossRefGoogle Scholar
  47. 47.
    I. Santacruz, C. Baudin, M. Isabel Nieto, R. Moreno, J. Eur. Ceram. Soc. 23, 1785 (2003)CrossRefGoogle Scholar
  48. 48.
    J.L. Minatti, J.G.A. Santana, R.S. Fernandes, E. Campos, J. Eur. Ceram. Soc. 29, 661 (2009)CrossRefGoogle Scholar
  49. 49.
    F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 91, 3138 (2008)CrossRefGoogle Scholar
  50. 50.
    G. Negri, R. Tabach, Rev. Bras. Farmacogn. 23, 851 (2013)CrossRefGoogle Scholar
  51. 51.
    J.S. Reed, Principles of Ceramic Processing (John Wiley & Sons Inc., New York, 1995), p. 161Google Scholar
  52. 52.
    D. Houivet, J.E. Fallah, J.M. Haussonne, J. Am. Ceram. Soc. 85, 321 (2002)CrossRefGoogle Scholar
  53. 53.
    G.W. Scherer, J. Am. Ceram. Soc. 73, 3 (1990)CrossRefGoogle Scholar
  54. 54.
    R.J. Pugh, Adv. Colloid Interface. Sci. 64, 67 (1996)CrossRefGoogle Scholar
  55. 55.
    L.G. Ma, Y. Huang, J.L. Hang, H.R. Le, Y. Sun, J. Mat. Sci. 40, 4947 (2005)CrossRefGoogle Scholar
  56. 56.
    J. Zeschky, T. Hofner, C. Arnold, R. Weibmann, D.B. Hourlier, M. Scheffler, P. Greil, Acta Mater. 53, 927 (2005)CrossRefGoogle Scholar
  57. 57.
    J. Yang, J. Yu, Y. Huang, J. Eur. Ceram. Soc. 31, 2569 (2011)CrossRefGoogle Scholar
  58. 58.
    S.W. Sofie, F. Dogan, J. Am. Ceram. Soc. 84, 1459 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of TechnologyRourkelaIndia

Personalised recommendations