Advertisement

Journal of Porous Materials

, Volume 26, Issue 1, pp 185–191 | Cite as

A facile and environmentally friendly biomass-assisted stӧber method to fabricate dispersed carbon nanospheres

  • Hui Xie
  • Jing Chong
  • Yong TianEmail author
  • Xiufang WangEmail author
Article
  • 82 Downloads

Abstract

Mesoporous carbon nanospheres (MCs) with high dispersity, specific surface area (~ 1045 m2/g) and large pore volume (0.92 cm3/g) were fabricated through a facile biomass-assisted stӧber method. In this process, tetraethylorthosilicate (TEOS) not only acted as a pore-forming agent but also as a dispersant to reduce the cross-linking of particles, which has never been reported before. Inspiringly, the particle morphologies and mesoporous structures of the obtained MCs could be facilely tuned by varying the NH3·H2O concentration. Compared with previously reported method, the present strategy affords a convenient, inexpensive and environmentally friendly biomass-assisted stӧber method as well as proposes a possible route to prepare spherical carbon nanoparticles with mesoporous structures.

Keywords

Mesoporous carbon nanospheres Ammonia Drug release 

Notes

Acknowledgements

The Planned Project of Science and Technology of Guangzhou City (201707010131), the Project for Innovation and Strengthen University of Guangdong Pharmaceutical University (2016KZDXM040, 2015cxqx213), and 2018 Guangdong University Student Science and Technology Innovation Foster Special Fund “Climbing Plan” Project (pdjh2018b0264) are acknowledged.

References

  1. 1.
    J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Nat. Mater. 14, 763–774 (2015)CrossRefGoogle Scholar
  2. 2.
    X.J. Zhu, S. Wang, W.Q. Huang, Y. Tian, X.F. Wang, Carbon. 105, 521–528 (2016)CrossRefGoogle Scholar
  3. 3.
    X.J. Zhu, J. Chong, T. Hu, X.F. Wang, Y. Tian, J. Mater. Chem. A. 5, 8297–8306 (2017)CrossRefGoogle Scholar
  4. 4.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface 193–194, 24–34 (2013)CrossRefGoogle Scholar
  5. 5.
    T.A. Saleh, V.K. Gupta, Adv. Colloid Interface 211, 93–101 (2014)CrossRefGoogle Scholar
  6. 6.
    V.K. Gupta, A. Nayak, S. Agarwal, I. Tyagi, J. Colloid Interface Sci. 417, 420–430 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452, 126–133 (2015)CrossRefGoogle Scholar
  8. 8.
    V.K. Gupta, N. Atar, M.L. Yola, Z. Ustundag, L. Uzun, Water Res. 48, 210–217 (2014)CrossRefGoogle Scholar
  9. 9.
    R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Lipid 177, 394–401 (2013)Google Scholar
  10. 10.
    R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Lipid 221, 1029–1033 (2016)Google Scholar
  11. 11.
    R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Mater. Sci. Eng. C. 33, 91–98 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, Mater. Sci. Eng. C. 33, 2235–2244 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. C. 33, 4725–4731 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Chem. Eng. J. 268, 28–37 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Chem. Eng. J. 284, 687–697 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.Kumar Gupta, RSC Adv. 5, 18438–18450 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, RSC Adv. 5, 34645–34651 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Devaraj, R. Saravanan, R. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, J. Mol. Lipid 221, 930–941 (2016)Google Scholar
  19. 19.
    V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. Eng. C. 31, 1062–1067 (2011)CrossRefGoogle Scholar
  20. 20.
    V.K. Gupta, T.A. Saleh, Environ. Sci. Pollut. R. 20, 2828–2843 (2013)CrossRefGoogle Scholar
  21. 21.
    V.K. Gupta, A. Nayak, S. Agarwal, Env. Eng. Res. 20, 1–18 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Ahmaruzzaman, V.K. Gupta, Ind. Eng. Chem. Res. 50, 13589–13613 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Lipid 173, 153–163 (2012)Google Scholar
  24. 24.
    H. Khani, M.K. Rofouei, P. Arab, V.K. Gupta, Z. Vafaei, J. Hazard. Mater. 183, 402–409 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 344, 497–507 (2010)CrossRefGoogle Scholar
  26. 26.
    N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362, 457–462 (2011)CrossRefGoogle Scholar
  27. 27.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 362, 337–344 (2011)CrossRefGoogle Scholar
  28. 28.
    T.A. Saleh, V.K. Gupta, Sep. Purif. Technol. 89, 245–251 (2012)CrossRefGoogle Scholar
  29. 29.
    W. Stöber, A. Fink, J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  30. 30.
    J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D.Y. Zhao, G.Q. Lu, Angew. Chem. Int. Ed. 50, 5947–5951 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Choma, D. Jamioła, K. Augustynek, M. Marszewski, M. Gao, M. Jaroniec, J. Mater. Chem. 22, 12636–12642 (2012)CrossRefGoogle Scholar
  32. 32.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371, 101–106 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Sci. Rep. 6, 31641 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, J. Mol. Liq. 178, 88–93 (2013)CrossRefGoogle Scholar
  35. 35.
    P.F. Zhang, Z.A. Qiao, S. Dai, Chem. Commun. 51, 9246–9256 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.T. Gong, L. Xie, H.R. Li, Y. Wang, Chem. Commun. 50, 12633–12636 (2014)CrossRefGoogle Scholar
  37. 37.
    T.P. Fellinger, R.J. White, M.M. Titirici, M. Antonietti, Adv. Funct. Mater. 22, 3254–3260 (2012)CrossRefGoogle Scholar
  38. 38.
    L. Qiao, J. Chen, Y. Ying, J.W. Zheng, L.Q. Jiang, J. Mater. Sci. 48, 3341–3346 (2013)CrossRefGoogle Scholar
  39. 39.
    C.M. Tseng, Y.Y. Lu, M.S.E. Aasser, J.W. Vanderhoff, J. Polym. Sci. A 24, 2995–3007 (1986)CrossRefGoogle Scholar
  40. 40.
    J.S. Song, F. Tronc, M.A. Winnik, J. Am. Chem. Soc. 126, 6562–6563 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Wang, W.C. Li, G.P. Hao, Y. Hao, Q. Sun, X.Q. Zhang, A.H. Lu, J. Am. Chem. Soc. 133, 15304–15307 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Wang, H.Y. Liu, J.Y. Diao, X.M. Gu, H.H. Wang, J.F. Rong, B.N. Zong, D.S. Su, J. Mater. Chem. A. 3, 2305–2313 (2015)CrossRefGoogle Scholar
  43. 43.
    J.X. Wang, S.S. Feng, Y.F. Song, W. Li, W.J. Gao, A.A. Elzatahry, D. Aldhayanb, Y.Y. Xia, D.Y. Zhao, Catal. Today 243, 199–208 (2015)CrossRefGoogle Scholar
  44. 44.
    N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Chem. Mater. 26, 2820–2828 (2014)CrossRefGoogle Scholar
  45. 45.
    H. Yu, Q.Z. Zhai, Micropor. Mesopor. Mater. 123, 298–305 (2009)CrossRefGoogle Scholar
  46. 46.
    P. Sharma, W.Z. Denny, S. Garg, Int. J. Pharm. 380, 40–48 (2009)CrossRefGoogle Scholar
  47. 47.
    Y.Z. Zhang, Z.Z. Zhi, X. Li, J. Gao, Y.L. Song, Int. J. Pharm. 454, 403–411 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Wani, E. Muthuswamy, G.H. Savithra, G. Mao, S. Brock, D. Oupicky, Pharm. Res. 29, 2407–2418 (2012)CrossRefGoogle Scholar
  49. 49.
    M.V. Regi, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46, 7548–7558 (2007)CrossRefGoogle Scholar
  50. 50.
    F. Kesisoglou, S. Panmai, Y.H. Wu, Adv. Drug Deliv. Rev. 59, 631–644 (2007)CrossRefGoogle Scholar
  51. 51.
    Y.Z. Zhang, H. Wang, C.J. Li, B.X. Sun, Y. Wang, S.L. Wang, C.Q. Gao, Pharm. Res. 31, 1059–1070 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations