Advertisement

Journal of Porous Materials

, Volume 26, Issue 2, pp 505–511 | Cite as

Study on coordination structure of Re adsorbed on Mg–Al layered double hydroxide using X-ray absorption fine structure

  • Kazuya TanakaEmail author
  • Naofumi Kozai
  • Toshihiko Ohnuki
  • Bernd Grambow
Article
  • 149 Downloads

Abstract

Porous materials of hydrotalcite-like layered double hydroxides (LDHs) have been used for removal of anionic contaminants from solution. However, local coordination structures of anions adsorbed on LDHs are not fully understood because of the lack of spectroscopic studies. In this study, we utilized X-ray absorption fine structure spectroscopy to clarify the coordination structure of Re in Mg–Al LDH as a surrogate of Tc. Adsorption experiments of ReO4 on calcined and uncalcined Mg–Al LDHs were conducted in aqueous solutions with different concentrations of NaCl, NaNO3, and Na2SO4. The tested calcined and uncalcined Mg–Al LDHs were characterized by chemical composition analysis, scanning electron microscopy (SEM), and BET surface area. Calcined Mg–Al LDH showed much higher adsorption than uncalcined one. The adsorption of ReO4 was reversible, and decreased with increasing concentration of competing anions like Cl, NO3, or SO42−. Rhenium LIII-edge X-ray absorption near edge structure suggested that neither redox reaction nor change of coordination structure occurred during intercalation of Re into Mg–Al LDH. Analysis of Re LIII-edge extended X-ray absorption fine structure indicated that ReO4 was adsorbed as an outer-sphere complex on Mg–Al LDH. The observed Re adsorption–desorption behavior, which was sensitive to the presence of competing anions, was consistent with the formation of outer sphere-complex.

Keywords

Re Tc Mg–Al LDH XAFS 

Notes

Acknowledgements

XAFS measurement was performed with the approval of the Photon Factory, KEK (Proposal No. 2015G113 and 2015G701). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    S. Miyata, Clays Clay Miner. 31, 305 (1983)CrossRefGoogle Scholar
  2. 2.
    M.J. Kang, S.W. Rhee, H. Moon, V. Neck, T. Fanghӓnel, Radiochim. Acta 75, 169 (1996)CrossRefGoogle Scholar
  3. 3.
    R.L. Goswamee, P. Sengupta, K.G. Bhattacharyya, D.K. Dutta, Appl. Clay Sci. 13, 21 (1998)CrossRefGoogle Scholar
  4. 4.
    T. Kameda, Y. Miyano, T. Yoshioka, M. Uchida, A. Okuwaki, Chem. Lett. 29, 1136 (2000)CrossRefGoogle Scholar
  5. 5.
    N. Kozai, T. Ohnuki, S. Komarneni, J. Mater. Res. 17, 2993 (2002)CrossRefGoogle Scholar
  6. 6.
    K.H. Goh, T.T. Lim, Z. Dong, Water Res. 42, 1343 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Jobbágy, A.E. Regazzoni, J. Colloid Interface Sci. 393, 314 (2013)CrossRefGoogle Scholar
  8. 8.
    N.A. Wall, Y. Minai, J. Radioanal. Nucl. Chem. 301, 221 (2014)CrossRefGoogle Scholar
  9. 9.
    K.H. Lieser, Radiochim. Acta 63, 5 (1993)CrossRefGoogle Scholar
  10. 10.
    H. Hu, B. Jiang, H. Wu, J. Zhang, X. Chen, J. Environ. Radioact. 165, 39 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Sarri, P. Misaelides, D. Zamboulis, X. Gaona, M. Altmaier, J. Radioanal. Nucl. Chem. 307, 681 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Yamashita, Y. Takahashi, H. Haba, S. Enomoto, H. Shimizu, Geochim. Cosmochim. Acta 71, 3458 (2007)CrossRefGoogle Scholar
  13. 13.
    B.C. Vicente, R.C. Nelson, A.W. Moses, S. Chattopadhyay, S.L. Scott, J. Phys. Chem. C 115, 9012 (2011)CrossRefGoogle Scholar
  14. 14.
    J.K. Choe, M.I. Boyanov, J. Liu, K.M. Kemner, C.J. Werth, T.J. Strathmann, J. Phys. Chem. C 118, 11666 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Tanaka, N. Watanabe, PLoS ONE 10(5), e0127417 (2015).  https://doi.org/10.1371/journal.pone.0127417 CrossRefGoogle Scholar
  16. 16.
    K. Tanaka, M. Tanaka, N. Watanabe, K. Tokunaga, Y. Takahashi, Chem. Geol. 460, 130 (2017)CrossRefGoogle Scholar
  17. 17.
    S.I. Zavinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B52, 2995 (1995)CrossRefGoogle Scholar
  18. 18.
    G. Fetter, F. Hernández, A.M. Maubert, V.H. Lara, P. Bosch, J. Porous Mater 4, 27 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Miyata, Clays Clay Miner. 28, 50 (1980)CrossRefGoogle Scholar
  20. 20.
    Y. Xi, R.J. Davis, J. Catal. 268, 307 (2009)CrossRefGoogle Scholar
  21. 21.
    T. Sato, S. Onai, T. Yoshioka, A. Okuwaki, J. Chem. Tech. Biotechnol. 57, 137 (1993)CrossRefGoogle Scholar
  22. 22.
    L.M. Parker, N.B. Milestone, R.H. Newman, Ind. Eng. Chem. Res. 34, 1196 (1995)CrossRefGoogle Scholar
  23. 23.
    Y. You, G.F. Vance, H. Zhao, Appl. Clay Sci. 20, 13 (2001)CrossRefGoogle Scholar
  24. 24.
    B. Krebs, K.-D. Hasse, Acta Crystallogr. Sect. B 32, 1334 (1976)CrossRefGoogle Scholar
  25. 25.
    G.J. Kruger, E.C. Reynhardt, Acta Crystallogr. Sect. B 34, 259 (1978)CrossRefGoogle Scholar
  26. 26.
    P.A. O’Day, J.J. Rehr, S.I. Zabinsky, G.E. Brown, J. Am. Chem. Soc. 116, 2938 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kazuya Tanaka
    • 1
    Email author
  • Naofumi Kozai
    • 1
    • 2
  • Toshihiko Ohnuki
    • 1
  • Bernd Grambow
    • 1
    • 3
  1. 1.Advanced Science Research CenterJapan Atomic Energy AgencyTokaiJapan
  2. 2.Collaborative Laboratories for Advanced Decommissioning ScienceJapan Atomic Energy AgencyTokaiJapan
  3. 3.Subatech, UMR 6457 IMT-AtlantiqueUniversité de Nantes CNRS/IN2P3NantesFrance

Personalised recommendations