Journal of Porous Materials

, Volume 26, Issue 1, pp 77–89 | Cite as

Immobilization of the enzyme invertase in SBA-15 with surfaces functionalized by different organic compounds

  • Livia M. O. RibeiroEmail author
  • Larissa N. S. S. Falleiros
  • Miriam M. de Resende
  • Eloízio J. Ribeiro
  • Renata M. R. G. Almeida
  • Antonio O. S. da Silva


The search for appropriate supports for enzyme immobilization has attracted increasing interest in the field of biocatalysis. Immobilized enzymes are catalysts of enormous industrial interest because they combine the advantages of heterogeneous catalysis with the high selectivity and mild operational conditions of enzymes. This study evaluated the use of different organic molecules as functionalizing agents anchored on the silanol groups present on the surface of mesoporous materials such as SBA-15. This modification aims to increase the interaction of the enzyme invertase to the support, allowing for a greater amount of this biocatalyst to be immobilized. The hexagonal mesoporous material SBA-15, which has pores in the range of 40–60 Å, was synthesized and modified by the following organic compounds: trimethoxyphenylsilane, vinyltrimethoxysilane and 3-aminopropyltriethoxysilane (APTES). APTES showed the best results in increasing the anchoring of enzymes on the material’s surface, providing a specific amount of enzyme loaded onto the surface of approximately 80% and, thus, showing successful functionalization.


SBA-15 Silanes Functionalization Invertase Immobilization 



The authors acknowledge the support from the CAPES and CNPQ.


  1. 1.
    I. Chibata, Immobilized Enzymes: Research and Development, 1st edn, Kodonsha, New York, 1978Google Scholar
  2. 2.
    F.O. Bobbio, P.A. Bobbio, Introduction to Food Chemistry, 2nd edn, Varela, São Paulo, 1995Google Scholar
  3. 3.
    K. Faber, Biotransformations in Organic Chemistry (Springer, Berlin, 2004)CrossRefGoogle Scholar
  4. 4.
    G. Moffat, R.A. Williams, C. Webb, R. Stirling, Miner. Eng. 7, 1039 (1994)CrossRefGoogle Scholar
  5. 5.
    J.M. Palomo, R.L. Segura, G. Fernandez-Lorente, R. Fernandez-Lafuente, J.M. Guisán, Enzym. Microb. Technol. 40, 704 (2007)CrossRefGoogle Scholar
  6. 6.
    C.J. Cantarelli, Food Sci. 3, 3–20 (1989)Google Scholar
  7. 7.
    L. Canilha, W. de Carvalho, Biotechnol. Sci. Dev. 9 48–57; (2006)Google Scholar
  8. 8.
    L.D.S. Marquez, B.V. Cabral, V.L. Cardoso, E.J. Ribeiro, J. Mol. Catal. B 51, 86–92 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Corcoran, Topics in Enzyme and fermentation biotechonology, In: A. Wiseman (ed.), The Production and Use of Immobilized Living Microbial Cells, (Wiley, Hoboken, 1985), pp. 12–50Google Scholar
  10. 10.
    E. Aquarone, W. Borzani, W. Schmidell, U.A. Lima, Industrial biotechnology, In: E. Blücher (ed.), Application of Enzymes in Food Technology, (Edgard Blücher Ltda, São Paulo, 2001), pp. 387–418Google Scholar
  11. 11.
    A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J.P. Pariente, I. Izquierdo-Barba, M. Vallet-Regí, J. Control. Release 97, 125 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131 (1999)CrossRefGoogle Scholar
  13. 13.
    A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73 (2002)CrossRefGoogle Scholar
  14. 14.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 1992, 10834 (1992)CrossRefGoogle Scholar
  15. 15.
    Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11, 1621 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka, Science 261, 1299 (1993)CrossRefPubMedGoogle Scholar
  17. 17.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)CrossRefGoogle Scholar
  18. 18.
    B. Muñoz, a Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mater. 15, 500 (2003)CrossRefGoogle Scholar
  19. 19.
    F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45, 3216 (2006)CrossRefGoogle Scholar
  20. 20.
    J.M. Xue, M. Shi, J. Control. Release 98, 209 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Z. Liu, Z. Dong, B. Han, J. Zhang, J. Zhang, Z. Hou, J. He, T. Jiang, J. Mater. Chem. 13, 1373 (2003)CrossRefGoogle Scholar
  22. 22.
    E.F.S. Vieira, J.A. Simoni, C. Airoldi, J. Mater. Chem. 11, 2249 (1997)CrossRefGoogle Scholar
  23. 23.
    R. Huirache-Acuña, R. Nava, C.L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núñez, B. Pawelec, E.M. Rivera-Muñoz, Materials 6, 4139 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A.F. Santos, Immobilization of Invertase and commercial Saccharomyces cerevisiae in corncobs and bagasse sugar cane, Master Disertation, São Paulo (2010)Google Scholar
  25. 25.
    J. Bao, K. Koumatsu, K. Furumoto, M. Yoshimoto, K. Fukunaga, K. Nakao, Biochem. Eng. J. 22, 33 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Kwagh-harlkya, C.C. Ariahu, J.O. Ayatse, Curr. Res. Nutr. Food Sci. 2, 1 (2013)Google Scholar
  27. 27.
    M.M. Bradford, Anal. Biochem. 72, 248 (1976)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, Nanoscale 7, 5852 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    V.T. Motta, in: Basic biochemistry, MedBook (Eds.), Enzymes, Rio de Janeiro, 2011, pp. 68–101Google Scholar
  30. 30.
    J.J. Moré, in The Levenberg–Marquardt Algorithm: Implementation and Theory, ed. by G.A. Watson (ed.), (Lecture Notes in Math. Berlin, 1977), pp. 105–116Google Scholar
  31. 31.
    M. Kruk, M. Jaroniec, Chem. Mater. 12, 1961 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Luechinger, R. Prins, G.D. Pirngruber, Microporous Mesoporous Mater. 158, 281 (2012)CrossRefGoogle Scholar
  33. 33.
    J.L. Foschiera, T.N. Pizzolato, E.V. Benvenutti, J. Braz. Chem. Soc. 12, 159 (2001)CrossRefGoogle Scholar
  34. 34.
    C.H. Rochester, G.H. Yong, J. Chem. Soc. Faraday Trans. I 76, 1158 (1980)CrossRefGoogle Scholar
  35. 35.
    G.E. Fryxell, P.C. Rieke, L.L. Wood, M.H. Engelhard, R.E. Williford, G.L. Graff, A.A. Campbell, R.J. Wiacek, L. Lee, A. Halverson, Langmuir 12, 5064 (1996)CrossRefGoogle Scholar
  36. 36.
    M. Vallet-Regi, J.C. Doadrio, A.L. Doadrio, I. Izquierdo-Barba, J. Perez-Pariente, Solid State Ionics 172, 435 (2004)CrossRefGoogle Scholar
  37. 37.
    S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)CrossRefPubMedGoogle Scholar
  38. 38.
    L.M. Yang, Y.J. Wang, G.S. Luo, Y.Y. Dai, Microporous Mesoporous Mater. 84, 275 (2005)CrossRefGoogle Scholar
  39. 39.
    Z. Luan, J.A. Fournier, J.B. Wooten, D.E. Miser, Microporous Mesoporous Mater. 83, 150 (2005)CrossRefGoogle Scholar
  40. 40.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  41. 41.
    O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem. 47, 1220–1227 (2012)CrossRefGoogle Scholar
  42. 42.
    O. Barbosa, R. Torres, C. Ortiz, A. Berenguer-Murcia, R.C. Rodrigues, R. Fernandez-Lafuente, Biomacromolecules 14, 2433–2462 (2013)CrossRefPubMedGoogle Scholar
  43. 43.
    H. Zaak, S. Peirce, T.L. de Albuquerque, M. Sassi, R. Fernandez-Lafuente, Catalysts 7, 250 (2017)CrossRefGoogle Scholar
  44. 44.
    P.G. Vazquez-Ortega, M.T. Alcaraz-Fructuoso, J.A. Rojas-Contreras, J. López-Miranda, R. Fernandez-Lafuente, Enzym. Microb. Technol. 110, 38–45 (2018)CrossRefGoogle Scholar
  45. 45.
    O. Barbosa, C. Ortiz, A. Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, RSC Adv. 4, 1583–1600 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Livia M. O. Ribeiro
    • 1
    Email author
  • Larissa N. S. S. Falleiros
    • 2
  • Miriam M. de Resende
    • 2
  • Eloízio J. Ribeiro
    • 2
  • Renata M. R. G. Almeida
    • 1
  • Antonio O. S. da Silva
    • 1
  1. 1.Federal University of AlagoasMaceióBrazil
  2. 2.Faculty of Chemical EngineeringUberlândia Federal UniversityUberlândiaBrazil

Personalised recommendations