One-pot synthesis of IM-5 zeolite

Article
  • 49 Downloads

Abstract

IM-5 zeolite is synthesized in solutions of sodium hydroxide, sodium aluminate, and silica gel, along with N-methyl pyrrolidine and 1,5-dibromopentane by one-pot hydrothermal method. The method described in this paper is more convenient and environmentally benign than the conventional one, in which 1,5-bis (methylpyrrolidinium) pentane bromide is used as structure directing agent, because it eliminates the complex and toxic synthesis process of the agent. The influences of synthesis variables including OH/SiO2 ratio, H2O/SiO2 ratio, temperature, seed content, and crystallization time on the synthesis of IM-5 zeolite are studied with X-ray powder diffraction, field emission scanning electron microscopy and nitrogen adsorption characterization techniques. The experiments show that analcime and mordenite are the two impurity phases that compete with IM-5 zeolite in synthesis process and the alkalinity of solution, temperature, and the crystallization time are three key factors that affect the crystal phase of products. A tentative explanation for the mechanism of the crystal phase dependence on the synthesis variables is given. By carefully choosing synthesis conditions along with using seed, the crystallization time of synthesizing IM-5 zeolite has been greatly reduced.

Keywords

IM-5 zeolite Analcime Mordenite Crystal growth One-pot synthesis 

Notes

Acknowledgements

The research was financially supported by Yantai Runjing Chemical Technology Limited Company.

Supplementary material

10934_2018_606_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4350 KB)

References

  1. 1.
    A. Corma, J. Martínez-Triguero, S. Valencia, E. Benazzi, S. Lacombe, J. Catal. 206, 125–133 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Corma, J. Mengual, P.J. Miguel, Appl. Catal. A 460–461, 106–115 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, J. Catal. 279, 257–268 (2011)CrossRefGoogle Scholar
  4. 4.
    S.H. Lee, D.K. Lee, C.H. Shin, Y.K. Park, P.A. Wright, W.M. Lee, S.B. Hong, J. Catal. 215, 151–170 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Baerlocher, F. Gramm, L. Massüger, L.B. McCusker, Z. He, S. Hovmöller, X. Zhou, Science 315, 1113–1116 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Benazzi, J.L. Guth, L. Rouleau, PCT WO 98/17581 (1998)Google Scholar
  7. 7.
    L. Wang, W.Y. Yang, C.L. Xin, F.X. Ling, W.F. Sun, X.C. Fang, R.C. Yang, Mater. Lett. 69, 16–19 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Wang, W.Y. Yang, F.X. Ling, Z.Q. Shen, R.C. Yang, W.F. Sun, Microporous Mesoporous Mater. 163, 243–248 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Golabek, K.A. Tarach, K. Gora-Marek, Dalton Trans. 46, 9934–9950 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Ogunbadejo, A. Aitani, A. Čejka, M. Kubů, S. Al-Khattaf, Chem. Eng. J. 306, 1071–1080 (2016)CrossRefGoogle Scholar
  11. 11.
    P.N.R. Vennestrøm, T.V.M. Janssens, A. Kustov, M. Grill, A. Puig-Molina, L.F. Lundegaard, R.R. Tiruvalam, P. Concepción, A. Corma, J. Catal. 309, 477–490 (2014)CrossRefGoogle Scholar
  12. 12.
    H.L. Liu, J. Hu, Z.F. Li, S.J. Wu, L.L. Liu, J.Q. Guan, Q.B. Kan, Kinet. Catal. 54, 443–450 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Kubů, S.I. Zones, J. Čejka, Top Catal. 53, 1330–1339 (2010)CrossRefGoogle Scholar
  14. 14.
    Ch Baerlocher, L.B. McCusker, D.H. Olson, Atlas of zeolite structure Types, 6th edn. (Elsevier, Amsterdam, 2007). http://www.iza-online.org
  15. 15.
    V. Gramlich, Ph.D. thesis, ETH, Zürich, 1971Google Scholar
  16. 16.
    C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 82, 1–78 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Mintova, N.H. Olson, V. Valtchev, T. Bein, Science 283, 958–960 (1999)CrossRefGoogle Scholar
  18. 18.
    M.E. Davis, R.F. Lobo, Chem. Mater. 4, 756–768 (1992)CrossRefGoogle Scholar
  19. 19.
    M.D. Oleksiak, J.D. Rimer, Rev. Chem. Eng. 30(1), 1–49 (2014)CrossRefGoogle Scholar
  20. 20.
    I. Petrovic, A. Navrotsky, M.E. Davis, S.I. Zones, Chem. Mater. 5, 1805 (1993)CrossRefGoogle Scholar
  21. 21.
    A. Navrotsky, O. Trofymluk, A.A. Levchenko, Chem. Rev. 109(9), 3885–3902 (2009)CrossRefGoogle Scholar
  22. 22.
    P.K. Dutta, M. Pur, D.C. Shieh, Mater. Res. Soc. Symp. Proc. 11, 101 (1988)Google Scholar
  23. 23.
    A.V. McCormick, A.T. Bell, Catal. Rev. 31, 97–127 (1988)CrossRefGoogle Scholar
  24. 24.
    M. Choudhunry, P.C. Borthakur, T. Bora, Indian J. Chem. Technol. 5, 1–6 (1998)Google Scholar
  25. 25.
    H. Aono, N. Kaji, Y. Itagaki, E. Johan, N. Matsue, J. Ceram. Soc. Jpn. 124, 617–623 (2016)CrossRefGoogle Scholar
  26. 26.
    H.X. Zhang, H.B. Zhang, P.C. Wang, Y. Zhao, Z.P. Shi, Y.H. Zhang, Y. Tang, RSC Adv. 6, 47623–47631 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanChina
  2. 2.Department of PhysicsNorth University of ChinaTaiyuanChina

Personalised recommendations