Skip to main content

Advertisement

Log in

Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zirconium metal-organic frameworks UIO-66(H2ADC) was synthesized with 9,10-anthracenedicarboxylic acid as ligand by the simple solution method (SS)and solvothermal reaction (S). The influence of different reaction conditions on the structure and properties of UIO-66(H2ADC) were investigated. The structures of samples UIO-66(H2ADC) were characterized by the powder X-ray diffraction, infrared spectroscopy and nitrogen sorption technique. UIO-66(H2ADC) and UIO-66 had the same face-centered cubic topology. When the feed ratio was 1.2:1 (metal:organic linker), the reaction temperature was 45 °C and reaction time was 12 h by the simple solution method (which was named UIO-66(H2ADC)-SS), UIO-66(H2ADC)-SS had the best crystallinity and BET specific surface area (432 m2/g) with average pore size of around 4.38 nm. And when at reaction condition was temperature of 85 °C, the feed ratio of 0.61:1(metal:organic linker) and time of 24 h by solvothermal reaction (denoted as UIO-66(H2ADC)-S), UIO-66(H2ADC)-S had the biggest BET specific surface area (772 m2/g) and had smaller average size of around 2.73 nm. The hydrogen storage properties of different samples were determined by hydrogen storage analyzer. UIO-66(H2ADC)-S and UIO-66(H2ADC)-SS hydrogen uptake capacity were 29.2 and 10.9 mg/g at 298 K, 5 MPa, respectively. When considering of unit the specific surface area adsorption UIO-66(H2ADC)-S and UIO-66(H2ADC)-SS were 0.0378 and 0.0252 mg/m2, but UIO-66 was 0.0233 mg/m2 ,which shown UIO-66(H2ADC) have good hydrogen uptake capacity. Interaction energy of UIO-66(H2ADC) and hydrogen was − 5.73 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Chen, J. Liu, Z. Li, H. Wang, X. Wang, Y. Xu, Int. J. Hydrog. Energy 42, 36 (2017)

    Google Scholar 

  2. J.L. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed. Engl. 44, 30 (2005)

    Article  Google Scholar 

  3. J. Goldsmith, A.G. Wong-Foy, M.J. Cafarella, D.J. Siegel, Chem. Mater. 25, 16 (2013)

    Article  Google Scholar 

  4. M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch, M.R. Hill, Chem. Soc. Rev. 46, 11 (2017)

    Article  Google Scholar 

  5. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 6941 (2003)

    Article  Google Scholar 

  6. K.K. Tanabe, S.M. Cohen, Chem. Soc. Rev. 40, 2 (2011)

    Article  Google Scholar 

  7. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 42 (2008)

    Article  Google Scholar 

  8. F. Yang, H. Huang, X. Wang, F. Li, Y. Gong, C. Zhong, J.-R. Li, Cryst. Growth Des. 15, 12 (2015)

    Google Scholar 

  9. F. Ragon, B. Campo, Q. Yang, C. Martineau, A.D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J.F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P.L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic, G. Clet, J. Mater. Chem. A 3, 7 (2015)

    Article  Google Scholar 

  10. M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Chem. Mater. 22, 24 (2010)

    Article  Google Scholar 

  11. M. Yoon, D. Moon, Microporous Mesoporous Mater. 215, 116–122 (2015)

    Article  CAS  Google Scholar 

  12. Q. Zhao, W. Yuan, J. Liang, J. Li, Int. J. Hydrog. Energy 38, 29 (2013)

    Article  Google Scholar 

  13. J. Ren, N.M. Musyoka, H.W. Langmi, B.C. North, M. Mathe, X. Kang, S. Liao, Int. J. Hydrog. Energy 40, 33 (2015)

    Google Scholar 

  14. B. Wang, X.L. Lv, D. Feng, L.H. Xie, J. Zhang, M. Li, Y. Xie, J.R. Li, H.C. Zhou, J. Am. Chem. Soc. 138, 19 (2016)

    Google Scholar 

  15. U. Herrmann, B. Tiimmler, G. Maass, P.K.T. Mew, F. Vogtle, Biochemistry 23, 18 (1984)

    Article  Google Scholar 

  16. S.-B. Xiao, S.-S. Chen, J. Liu, Z. Lin, F.-J. Zhang, X.-B. Wang, W.-C. Oh, J. Korean Ceram. Soc. 53, 2 (2016)

    Article  Google Scholar 

  17. Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Chem. Soc. Rev. 45, 8 (2016)

    Google Scholar 

  18. S.S. Han, W.Q. Deng, W.A. Goddard 3rd, Angew. Chem. Int. Ed. Engl. 46, 33 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 21171004), and the Science and Technology Project of Anhui Province (No. 1604a0802113), and Anhui Province Academic Technology Leader Training Funded Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xiao, S., Liu, J. et al. Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. J Porous Mater 25, 1783–1788 (2018). https://doi.org/10.1007/s10934-018-0591-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0591-6

Keywords

Navigation