Journal of Porous Materials

, Volume 25, Issue 6, pp 1765–1770 | Cite as

Effect of meso- and micropore structures on the hydrogen storage properties of nanoporous carbon materials

  • Ikumi Toda
  • Keiji Komatsu
  • Takuhiro Watanabe
  • Hiroe Toda
  • Hiroki Akasaka
  • Shigeo Ohshio
  • Hidetoshi Saitoh


We report on the pore structure and hydrogen storage properties of nanoporous carbon (NPC) prepared by KOH activation of rice husk ash. The specific surface area of the NPC increased from 220 to 2770 m2/g with an increase in KOH/rice husk ash weight ratio from 1:1 to 7:1. In addition, the micropore volume of the NPC increased from 0.08 to 0.73 cm3/g with an increase in KOH quantity. Furthermore, the mesopore volume also increased from 0.08 to 2.17 cm3/g. Results of pore size distribution studies indicated NPC pore size widening from the micropore to the mesopore scale with the addition of further KOH. The stored hydrogen content of the NPC therefore increased with the development of the pore structure. From these results, we propose that this change in pore size is responsible for the increase in stored hydrogen content in NPCs.


Meso structure Microstructure Hydrogen storage Nanoporous carbon 


  1. 1.
    D.-H. Kim, S. Jang, Y.-M. Yun, M.-K. Lee, C. Moon, W.-S. Kang, S.-S. Kwak, M.-S. Kim, Int. J. Hydrogen Energy 34, 16302 (2014)CrossRefGoogle Scholar
  2. 2.
    R.K. Ahluwalia, J.K. Peng, Int. J. Hydrogen Energy 34, 5476 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Shindo, T. Kondo, M. Arakawa, Y. Sakurai, J. Alloys Compd. 359, 267 (2003)CrossRefGoogle Scholar
  4. 4.
    T.Q. Hua, R.K. Ahluwalia, J.K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law, J. Sinha, Int. J. Hydrogen Energy 36, 3037 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Conte, P.P. Prosini, S. Passerini, Mater. Sci. Eng. 108, B2–B8 (2004)CrossRefGoogle Scholar
  6. 6.
    R.B. Rakhi, K. Sethupathi, S. Ramprabhu, Int. J. Hydrogen Energy 33, 381 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Beyaz, F.D. Lamari, B. Weinberger, P. Langlois, Int. J. Hydrogen Energy 35, 217 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Hayashi, N. Yamamoto, T. Horikawa, K. Muroyama, V.G. Gomes, J. Colloid Interface Sci. 281, 437 (2005)CrossRefGoogle Scholar
  9. 9.
    I. Toda, H. Ono, T. Takahata, S. Ohshio, H. Akasaka, S. Himeno, T. Kokubu, H. Saitoh, J. Solid Mech. Mater. Eng. 3, 1306 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Takahata, I. Toda, H. Ono, S. Ohshio, H. Akasaka, S. Himeno, T. Kokubu, H. Saitoh, J. Appl. Phys. 48, 117001–117001 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Nakata, M. Suzuki, T. Okutani, M. Kikushi, T. Akiyama, J. Ceram. Soc. Jpn. 97, 842 (1989)CrossRefGoogle Scholar
  12. 12.
    H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Chap. 6) (Elsevier, Amsterdam, 2006), pp. 322–365CrossRefGoogle Scholar
  13. 13.
    V.A. Yakovlev, P.M. Yeletsky, M.Y. Lebedev, D.Y. Ermakov, V.N. Parmon, Chem. Eng. J. 134, 246 (2007)CrossRefGoogle Scholar
  14. 14.
    M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Carbon 41, 267 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Ono, H. Akasaka, I. Toda, H. Tanaka, T. Watanabe, S. Ooki, Y. Tanaka, F. Takada, S. Ohshio, S. Himeno, T. Kokubu, H. Saitoh, Trans. Mater. Res. Soc. Jpn. 36, 593 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Tanaka, I. Toda, H. Maruyama, H. Ono, S. Ohshio, H. Akasaka, Y. Tanaka, S. Himeno, H. Saitoh, Trans. Mater. Res. Soc. Jpn. 37, 57 (2012)CrossRefGoogle Scholar
  17. 17.
    T.A. Brady, M. Rostam-Abadi, M.J. Rood, Gas Sep. Purif. 10, 97 (1996)CrossRefGoogle Scholar
  18. 18.
    N. Bagheri, J. Abedi, Chem. Eng. Res. Des. 89, 2038 (2011)CrossRefGoogle Scholar
  19. 19.
    R.L. Burwell, IUPAC Manual of Symbols and Terminology (1972)Google Scholar
  20. 20.
    P. Bénard, R. Chahine, P.A. Chandonia, D. Cossement, G. Dorval-Douville, L. Lafi, P. Lachance, R. Paggiaro, E. Poirier, J. Alloys Compd. 380, 446–447 (2007)Google Scholar
  21. 21.
    H. Akasaka, T. Takahata, I. Toda, H. Ono, S. Ohshio, S. Himeno, T. Kokubu, H. Saitoh, Int. J. Hydrogen Energy 36, 580 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Kalderis, S. Bethanis, P. Paraskeva, E. Diamadopoulos, Bioresour. Technol. 99, 6809 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Muramatsu, Y.A. Kim, K.S. Yang, R.S. Cruz, I. Toda, T. Yamada, M. Terrones, M. Endo, T. Hayashi, H. Saitoh, Small 10, 2766 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Furtado, P. Galvosas, M. Gonçalves, F.D. Kopinke, S. Naumov, F. Rodríguez-Reinoso, U. Roland, R. Valiullin, J. Karger, J. Am. Chem. Soc. 133, 2437 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Adv. Funct. Mater. 16, 2288 (2006)CrossRefGoogle Scholar
  26. 26.
    J.-C. Liu, P.A. Monson, Ind. Eng. Chem. Res. 45, 5649 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Striolo, A.A. Chialvo, P.T. Cummings, K.E. Gubbins, Langmuir 19, 8583 (2003)CrossRefGoogle Scholar
  28. 28.
    H. Zhan, S. Wu, R. Bao, K. Zhao, L. Xiao, L. Ge, H. Shi, RSC Adv. 5, 14389 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ikumi Toda
    • 1
  • Keiji Komatsu
    • 1
  • Takuhiro Watanabe
    • 1
  • Hiroe Toda
    • 1
  • Hiroki Akasaka
    • 1
  • Shigeo Ohshio
    • 1
  • Hidetoshi Saitoh
    • 1
  1. 1.Department of Materials Science and TechnologyNagaoka University of TechnologyNagaokaJapan

Personalised recommendations