Journal of Porous Materials

, Volume 25, Issue 6, pp 1697–1705 | Cite as

Opacified graphene-doped silica aerogels with controllable thermal conductivity

  • Jiayi Zhu
  • Hongbo Ren
  • Yutie Bi


In this work, we developed a new type of thermal insulation materials by combining the silica aerogel (SiO2) and graphene (G) followed by aging and supercritical drying. The effects of different G/SiO2 mass ratios on the microstructures and properties of opacified G/SiO2-x composite aerogels were investigated. The results showed that the graphene was well-distributed in the SiO2 matrix. Meanwhile, the opacified composite aerogels showed high-specific surface area (~ 1000 m2/g). Due to the unique bandgap feature and conjugated large π bond of graphene, the thermal insulation property of G/SiO2-x composite aerogels was enhanced in contrast with the pure SiO2 aerogel. Moreover, a possible mechanism of heat transfer was discussed to interpret the result.


Silica aerogel Graphene Composite aerogel Thermal conductivity Thermal insulation 



This study was funded by the National Natural Science Foundation of China (Grant No. 51502274) and the Doctoral Research Fund of Southwest University of Science and Technology (Nos. 15zx7137, 16zx7142).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict interest.

Supplementary material

10934_2018_583_MOESM1_ESM.doc (106 kb)
Supplementary material 1 (DOC 106 KB)


  1. 1.
    S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127, 741 (1931)CrossRefGoogle Scholar
  2. 2.
    J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J. Nanopart. Res. 14, 1–15 (2012)Google Scholar
  3. 3.
    J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int. J. Heat Mass Transf. 55, 5196–5204 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Huber, S. Zhao, M.M. Koebel, Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process. in Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, LESO-PB, EPFL, Lusanne, Switzerland, 2015, pp. 9–14Google Scholar
  5. 5.
    H.X. Yang, F. Ye, Q. Liu, S.C. Liu, Y. Gao, L.M. Liu, A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Mater. Lett. 138, 135–138 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Strobach, B. Bhatia, S. Yang, L. Zhao, E.N. Wang, High temperature annealing for structural optimization of silica aerogels in solar thermal applications. J. Non-Cryst. Solids 462, 72–77 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Chen, X.L. Xia, X.L. Meng, X.H. Dong, Thermal performance analysis on a volumetric solar receiver with double-layer ceramic foam. Energy Convers. Manage. 97, 282–289 (2015)CrossRefGoogle Scholar
  8. 8.
    A.V. Rao, N.D. Hegde, H. Hirashima, Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 305, 124–132 (2007)CrossRefGoogle Scholar
  9. 9.
    M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patricio, L. Duraes, Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J. Colloid Interface Sci. 380, 134–140 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Anandan, N. Hebalkar, B.V. Sarada, T.N. Rao, Nanomanufacturing for Aerospace Applications (Springer, Singapore, 2017)CrossRefGoogle Scholar
  11. 11.
    J.E. Fesmire, Aerogel insulation systems for space launch applications. Cryogenics 46, 111–117 (2006)CrossRefGoogle Scholar
  12. 12.
    P.S. Suchithra, L. Vazhayal, A.P. Mohamed, S. Ananthakumar, Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of silica-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chem. Eng. J. 200, 589–600 (2012)CrossRefGoogle Scholar
  13. 13.
    M.Y. Xu, D.J. Tan, Y. Wang, P.Q. Wang, L. He, J. Yang, Current research and development of silica aerogel drying method. Adv. Mater. Res. 919–921, 2048–2051 (2014)Google Scholar
  14. 14.
    M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012)CrossRefGoogle Scholar
  15. 15.
    N. Wang, P. Zhao, K. Liang, M.Q. Yao, Y. Yang, W.C. Hu, CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem. Eng. J. 307, 105–112 (2017)CrossRefGoogle Scholar
  16. 16.
    N. Wang, M. Yao, P. Zhao, W.C. Hu, S. Komarneni, Remarkable electrochemical properties of novel LaNi 0.5 Co 0.5 O 3/0.333 Co3O4 hollow spheres with a mesoporous shell. J. Mater. Chem. A 5(12), 5838–5845 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, N. Wang, M.Q. Yao, C.T. Yang, W.C. Hu, S. Komarneni, Porous Ag-doped MnO2 thin films for supercapacitor electrodes. J. Porous Mater. 24(6), 1717–1723 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Bheekhun, A. Abu Talib, M.R. Hassan, Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng. 2013, 49 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Kim, J. Seo, J. Cha, S. Kim, Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr. Build. Mater. 40, 501–505 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Ibrahim, P.H. Biwole, E. Wurtz, P. Achard, A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating. Build. Environ. 81, 112–122 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Reim, W. Körner, J. Manara, S. Korder, M. Arduini-Schuster, H.P. Ebert, J. Fricke, Silica aerogel granulate material for thermal insulation and daylighting. Sol. Energy 79, 131–139 (2005)CrossRefGoogle Scholar
  22. 22.
    B. Yuan, S.Q. Ding, D.D. Wang, G. Wang, H.X. Li, Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater. Lett. 75, 204–206 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Zhao, G.H. Tang, M. Du, Numerical study of radiative properties of nanoporous silica aerogel. Int. J. Therm. Sci. 89, 110–120 (2015)CrossRefGoogle Scholar
  24. 24.
    Q.F. Xu, H.B. Ren, J.Y. Zhu, Y.T. Bi, Y.W. Xu, L. Zhang, Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 469, 14–18 (2017)CrossRefGoogle Scholar
  25. 25.
    J.P. Feng, Y.L. Wang, X. Feng, Q. Huang, S.J. Ma, W. Mo, J.L. Yang, X.J. Su, M.Q. Lin, Radiative heat attenuation mechanisms for nanoporous thermal insulating composites. Appl. Therm. Eng. 105, 39–45 (2016)CrossRefGoogle Scholar
  26. 26.
    J.J. Zhao, Y.Y. Duan, X.D. Wang, X.R. Zhang, Y.H. Han, Y.B. Gao, Z.H. Lv, H.T. Yu, B.X. Wang, Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int. J. Therm. Sci. 70, 54–64 (2013)CrossRefGoogle Scholar
  27. 27.
    X.D. Wang, D. Sun, Y.Y. Duan, Z.J. Hu, Radiative characteristics of opacifier-loaded silica aerogel composites. J. Non-Cryst. Solids 375, 31–39 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Kuhn, T. Gleissner, M.C. Arduini-Schuster, S. Korder, J. Fricke, Integration of mineral powders into SiO2 aerogels. J. Non-Cryst. Solids 186, 291–295 (1995)CrossRefGoogle Scholar
  29. 29.
    X.D. Wu, G.F. Shao, X.D. Shen, S. Cui, L. Wang, Novel Al2O3-SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol-gel method. RSC Adv. 6, 5611–5620 (2016)CrossRefGoogle Scholar
  30. 30.
    J. He, X.L. Li, D. Su, H.M. Ji, X. Zhang, W.S. Zhang, Super-hydrophobic hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J. Mater. Chem. A 4, 5632–5638 (2016)CrossRefGoogle Scholar
  31. 31.
    J.Y. Zhu, J.H. He, Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications. Nanoscale 4, 3558–3566 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Zhu, L. Zhang, W. Wu, Y. Cao, J. He, Fabrication of graphene-based nanostructured thin films with mid-infrared photoresponse properties. Int. J. Nanosci. 13, 1460008 (2014)CrossRefGoogle Scholar
  33. 33.
    A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90(6), 627–648 (2017)CrossRefGoogle Scholar
  34. 34.
    C. Tan, X. Cao, ,X.J. Wu, C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha, K. Ariga, L.K. Shrestha, Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance. Bull. Chem. Soc. Jpn. 90, 955 (2017)CrossRefGoogle Scholar
  36. 36.
    W. Nakanishi, K. Minami, L.K. Shrestha, Q.M. Ji, J.P. Hill, K. Arigaet, Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nano Today 9(3), 378–394 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Li, L. Tao, Z. Chen, H. Fang, X.S. Li, X.R. Wang, Ji.B. Xu, H.W. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4(2), 021306 (2017)CrossRefGoogle Scholar
  38. 38.
    J.Y. Zhu, Y. Cao, J.H. He, Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films. J. Colloid Interface Sci. 420, 119–126 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Yang, Y. Cao, J.H. He, Y. Zhang, B.B. Jin, J.L. Sun, Y.X. Wang, Z.R. Zhao, Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon 115, 561–570 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Cao, J.Y. Zhu, J. Xu, J.H. He, Tunable near-infrared photovoltaic and photoconductive properties of reduced graphene oxide thin films by controlling the number of reduced graphene oxide bilayers. Carbon 77, 1111–1122 (2014)CrossRefGoogle Scholar
  41. 41.
    Y. Cao, J.Y. Zhu, J. Xu, J.H. He, J.L. Sun, Y.X. Wang, Z.R. Zhao, Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10, 2345–2351 (2014)CrossRefGoogle Scholar
  42. 42.
    L. Zhong, X.H. Chen, H.H. Song, K. Guo, Z.J. Hu, Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 39, 7832–7838 (2015)CrossRefGoogle Scholar
  43. 43.
    B. Orel, R. Ješe, A. Vilčnik, U.L. Štangar, Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J. Sol-Gel Sci. Technol. 34, 251–265 (2005)CrossRefGoogle Scholar
  44. 44.
    O.J. Lee, K.H. Lee, T.J. Yim, Y.K. Sun, K.P. Yoo, Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 298, 287–292 (2002)CrossRefGoogle Scholar
  45. 45.
    J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. J. Porous Mater. 23, 1217–1225 (2016)CrossRefGoogle Scholar
  46. 46.
    J.Y. Zhu, X. Yang, Z.B. Fu, J.H. He, C.Y. Wang, W.D. Wu, L. Zhang, Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbongraphene nanosheets towards ultralight,superhigh surface area, multifunctional aerogels. Chem. Eur. J. 22, 2515–2524 (2016)CrossRefGoogle Scholar
  47. 47.
    H.B. Ren, X.P. Shi, J.Y. Zhu, Y. Zhang, Y.T. Bi, L. Zhang, Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci. 51, 6419–6427 (2016)CrossRefGoogle Scholar
  48. 48.
    H.B. Ren, J.Y. Zhu, Y.T. Bi, Y.W. Xu, L. Zhang, Facile fabrication of flexible graphene porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv. 6, 89140–89147 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Structure Material LaboratorySouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Joint Laboratory for Extreme Conditions Matter PropertiesSouthwest University of Science and Technology and Research Center of Laser FusionMianyangPeople’s Republic of China

Personalised recommendations