Advertisement

Three-dimensional porous carbon aerogels from sodium carboxymethyl cellulose/poly(vinyl alcohol) composite for high-performance supercapacitors

Article

Abstract

Three-dimensional interconnected porous carbon aerogels were successfully prepared by the pyrolysis of sodium carboxymethyl cellulose/poly(vinyl alcohol) composite using borax as a cross-linking agent. After sol–gel, freeze-drying, carbonization and KOH-activation treatments, the as-obtained carbon aerogels exhibited high specific surface areas (SSAs) and excellent electrochemical performance. The optimal sample showed a high SSA of up to 601.4 m2/g with a total pore volume of 0.38 cm3/g. The aCA-3 sample exhibited an excellent capacitance of 182.8 F/g at a current density of 0.5 A/g, within a potential window of − 1.0 to 0.0 V in a 6 M KOH electrolyte solution. In addition, the aCA-3 electrode showed excellent cyclability with 96.2% capacitance retention efficiency at 2 A/g current density after 2000 cycles of charge/discharge. These easily prepared, well-structured and high-performance carbon aerogels have significant potential applications in advanced electronic devices and energy storage systems.

Keywords

Carbon aerogel Supercapacitor Sodium carboxymethyl cellulose Poly(vinyl alcohol) 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities (E2572017EB05) and Heilongjiang Province outstanding youth science fund (JC201301).

References

  1. 1.
    J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T.A. Strobel, L. Tao, F. Gao, Nat. Commun. 6, 8503 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Chem. Eng. J. 308, 240–247 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 767–784 (2012)CrossRefGoogle Scholar
  4. 4.
    H.C. Chien, W.Y. Cheng, Y.H. Wang, S.Y. Lu, Adv. Funct. Mater. 22, 5038–5043 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Zhuo, Y. Hu, X. Tong, L. Zhong, X. Peng, R. Sun, Ind. Crop. Prod. 87, 229–235 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Chen, S. Song, D. Xue, J. Mater. Chem. A 3, 2441–2453 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Chen, F. Liu, D. Xue, K. Sridhar, Nanoscale 7, 432–439 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Chen, D. Xue, Mater. Res. Bull. 96, 281–285 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Chen, S. Song, F. Liu, D. Xue, Chem. Soc. Rev. 44, 6230–6257 (2015)CrossRefGoogle Scholar
  10. 10.
    Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu, Y. Kuang, Electrochim. Acta 52, 2959–2965 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Bo, Z. Xiaogang, Y. Changzhou, L. Juan, Y. Long, Electrochim. Acta 52, 1028–1032 (2006)CrossRefGoogle Scholar
  12. 12.
    C.-S. Yang, Y.S. Jang, H.K. Jeong, Curr. Appl. Phys. 14, 1616–1620 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Chen, D. Xue, Chin. J. Chem. 35, 861–866 (2017)CrossRefGoogle Scholar
  14. 14.
    I. Moriguchi, F. Nakahara, H. Furukawa, H. Yamada, T. Kudo, Electrochem. Solid State Lett. 7, A221 (2004)CrossRefGoogle Scholar
  15. 15.
    B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Carbon 48, 456–463 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Sahu, R.B. Marichi, G. Singh, R.K. Sharma, Electrochim. Acta 240, 146–154 (2017)CrossRefGoogle Scholar
  17. 17.
    Y.z.. Ma, Y. Guo, C. Zhou, C.y.. Wang, Electrochim. Acta 210, 897–904 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.J. Lee, J.C. Jung, J. Yi, S.H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys. 10, 682–686 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Zhu, H. Hu, W.-C. Li, X. Zhang, J. Power Sources 162, 738–742 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Szczurek, K. Jurewicz, G. Amaral-Labat, V. Fierro, A. Pizzi, A. Celzard, Carbon 48, 3874–3883 (2010)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Wu, H.W. Liang, C. Li, B.C. Hu, X.X. Xu, Q. Wang, J.F. Chen, S.H. Yu, Nano Res. 7, 1861–1872 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Wang, C. Schütz, G. Salazar-Alvarez, M.M. Titirici, RSC Adv. 4, 17549 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, S. Fu, L. Zhang, H. Zhan, Carbohydr. Polym. 97, 429–435 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Wang, S. Kaskel, J. Mater. Chem. 22, 23710 (2012)CrossRefGoogle Scholar
  25. 25.
    D. Lozano-Castelló, J.M. Calo, D. Cazorla-Amorós, A. Linares-Solano, Carbon 45, 2529–2536 (2007)CrossRefGoogle Scholar
  26. 26.
    E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, Carbon 43, 786–795 (2005)CrossRefGoogle Scholar
  27. 27.
    B. Wang, J. Qiu, H. Feng, E. Sakai, T. Komiyama, Electrochim. Acta 190, 229–239 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Pourjavadi, S. Barzegar, G.R. Mahdavinia, Carbohydr. Polym. 66, 386–395 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Xu, Y. Ao, S. Wang, J. Peng, J. Li, M. Zhai, Carbohydr. Polym. 128, 171–178 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Spoljaric, A. Salminen, N.D. Luong, J. Seppälä, Eur. Polym. J. 56, 105–117 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Lu, F. Lin, X. Jiang, J. Cheng, Q. Lu, J. Song, C. Chen, B. Huang, ACS Sustain Chem. Eng. 5, 948–956 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Zhang, Z. Pang, C. Dong, Z. Liu, Carbohydr. Polym. 132, 214–220 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Rangelova, L. Aleksandrov, T. Angelova, N. Georgieva, R. Muller, Carbohydr. Polym. 101, 1166–1175 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Mallakpour, F. Motirasoul, Prog. Org. Coat. 103, 135–142 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Mallakpour, M. Zhiani, A. Barati, H. Rostami, Int. J. Hydrogen Energy 38, 12418–12426 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Han, T. Lei, Q. Wu, Carbohydr. Polym. 102, 306–316 (2014)CrossRefGoogle Scholar
  37. 37.
    H. Wang, Y. Gong, Y. Wang, RSC Adv. 4, 45753–45759 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Jiang, H. Chen, Z. Wang, L. Bao, Y. Qiang, S. Guan, J. Chen, J. Colloid Interface Sci. 452, 54–61 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Li, K. Han, J. Li, M. Li, C. Lu, Microporous Mesoporous Mater. 243, 291–300 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Nano Energy 12, 141–151 (2015)CrossRefGoogle Scholar
  41. 41.
    X. Wei, S. Wan, S. Gao, Nano Energy 28, 206–215 (2016)CrossRefGoogle Scholar
  42. 42.
    W.H. Qu, Y.Y. Xu, A.H. Lu, X.Q. Zhang, W.C. Li, Bioresour. Technol. 189, 285–291 (2015)CrossRefGoogle Scholar
  43. 43.
    G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z. Lei, Bioresour. Technol. 197, 137–142 (2015)CrossRefGoogle Scholar
  44. 44.
    X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov, G. Lubineau, H.N. Alshareef, M. Oh, Adv. Funct. Mater. 25, 3193–3202 (2015)CrossRefGoogle Scholar
  45. 45.
    N. Liu, J. Shen, D. Liu, Microporous Mesoporous Mater 167, 176–181 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, W. Fan, Y. Huang, C. Zhang, T. Liu, RSC Adv. 5, 1301–1308 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Lai, Y.E. Miao, L. Zuo, Y. Zhang, T. Liu, ChemNanoMat 2, 212–219 (2016)CrossRefGoogle Scholar
  48. 48.
    Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi, X. Ma, D. Zhu, Z. Xu, Z. Hao, L. Gan, Electrochim. Acta 153, 448–455 (2015)CrossRefGoogle Scholar
  49. 49.
    X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sources 240, 109–113 (2013)CrossRefGoogle Scholar
  50. 50.
    E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta 192, 110–119 (2016)CrossRefGoogle Scholar
  51. 51.
    A. Eftekhari, Sustain Energy Fuel 1, 2053–2060 (2017)CrossRefGoogle Scholar
  52. 52.
    C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, Z. Zapata-Benabithe, Carbon 49, 3808–3819 (2011)CrossRefGoogle Scholar
  53. 53.
    K. Gao, Z. Shao, X. Wang, Y. Zhang, W. Wang, F. Wang, RSC Adv. 3, 15058 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Miao Yu
    • 1
    • 2
  • Yingying Han
    • 1
    • 2
  • Jian Li
    • 1
    • 2
  • Lijuan Wang
    • 1
    • 2
  1. 1.College of Material Science and EngineeringNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Research Center of Wood Intelligent ScienceNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations