Advertisement

Journal of Porous Materials

, Volume 25, Issue 6, pp 1659–1668 | Cite as

Solvothermal synthesis of porous conjugated polymer with high surface area for efficient adsorption of organic and biomolecules

  • Haoyue Zhu
  • Cuicui Wang
  • Jun Zhou
  • Mimi Wan
  • Ying Wang
  • Zhigang Zou
  • Mauricio Terrones
Article
  • 213 Downloads

Abstract

Aimed to prepare high efficient dye sorbent and control water pollution, herein we utilized solvothermal method to synthesize porous polyimide (PI) polymer with a large surface area using DMSO as solvent. Unlike the solid-state thermal polymerized PI with low surface area of 5 m2g−1, this PI material prepared in DMSO solvent possessed a large surface area of 430 m2g−1, which was beneficial for adsorption of organic dye in waste water, achieving a max MO adsorption of 200 mg g−1 three times higher than that of multiwalled carbon nanotube. The adsorption kinetics of dye molecules on PI was investigated in detail and the R2 value of 0.99071 for pseudo-second-order model confirms the adsorption was fitted best with Langmuir isotherm.

Keywords

Porous polyimide (PI) polymer Solvothermal method Adsorption Methyl orange Environment protection 

Notes

Acknowledgements

This work was financially supported by NSFC (21773113), and the authors would like to thank Analysis Center of Nanjing University for the sample characterization and the National Supercomputing Center in Shenzhen for computational facilities.

References

  1. 1.
    S.H. Chen, J. Zhang, C.L. Zhang, Q.Y. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination. 252, 149–156 (2010)CrossRefGoogle Scholar
  2. 2.
    A.E. Ofomaja, Y.S. Ho, Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresour. Technol. 99, 5411–5417 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026 (2005)CrossRefGoogle Scholar
  4. 4.
    G. McKay, Adsorption of dyestuffs from aqueous solutions with activated carbon. Part I. Equilibrium and batch contact-time studies. J. Chem. Technol. Biotechnol. 32, 759–772 (1982)CrossRefGoogle Scholar
  5. 5.
    P. Nigam, I.M. Banat, D. Singh, R. Marchant, Microbial process for decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem. 31 (1996) 435–442CrossRefGoogle Scholar
  6. 6.
    G. Annadurai, R.-S. Juang, D.-J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274 (2002)CrossRefGoogle Scholar
  7. 7.
    Y.L. Yao, B. He, F.F. Xu, X.F. Chen, Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 170, 82–89 (2011)CrossRefGoogle Scholar
  8. 8.
    Z.M. Ni, S.J. Xia, L.G. Wang, F.F. Xing, G.X. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J. Colloid Interface Sci. 316, 284–291 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Küçükosmanoğlu, O. Gezici, A. Ayar, The adsorption behaviors of methylene blue and methyl orange in a diaminoethane sporopollenin-mediated column system. Sep. Purif. Technol. 52, 280–287 (2006)CrossRefGoogle Scholar
  10. 10.
    J.H. Huang, K.L. Huang, S.Q. Liu, A.T. Wang, C. Yan, Adsorption of rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surf. A 330, 55–61 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Samarghandi, M. Hadi, S. Moayedi, F. Askari, Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran. J. Environ. Health Sci. Eng. 6, 285–294 (2009)Google Scholar
  12. 12.
    Z.N. Liu, A.N. Zhou, G.R. Wang, X.G. Zhao, Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chin. J. Chem. Eng. 17, 942–948 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Chu, Y. Wang, Y. Guo, P. Zhou, H. Yu, L.L. Luo, F. Kong, Z.G. Zou, Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water. J. Mater. Chem. 22, 15519–15521 (2012)CrossRefGoogle Scholar
  14. 14.
    M.S. Ahola, E.S. Sailynoja, M.H. Raitavuo, Invitro release of heparin from silica xerogels. Biomaterials. 22, 2163–2170 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Park, K. Li, F. Jin, Synthesis and characterization of hyper-branched polyimides from 2,4,6-triamino pyrimidine and dianhydrides system. Mater. Chem. Phys. 108, 214–219 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Chu, Y. Wang, C. Wang, J. Yang, Z. Zou, Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation. Int. J. Hydrog. Energy. 38, 10768–10772 (2013)CrossRefGoogle Scholar
  17. 17.
    S.Z. Zeng, L.M. Guo, F.M. Cui, Z. Gao, J. Zhou, J.L. Shi, In situ self-assembly of zigzag polyimide chains to crystalline branched supramolecular structures with high surface area. Macromol. Chem. Phys. 211, 698–705 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Brauner, P.H. Emmet, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  19. 19.
    A. Trewin, A.I. Cooper, Predicting microporous crystalline polyimides. CrystEngComm. 11, 1819–1822 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Khan, J. Gor, B. Mulloy, S.J. Perkins, Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes. J. Mol. Biol. 395, 504–521 (2010)CrossRefGoogle Scholar
  21. 21.
    M.M. Wan, W.J. Qian, W.G. Lin, Y. Zhou, J.H. Zhu, Multiply functionalization of SBA-15 mesoporous silica in one-pot: fabricating aluminum- containing plugged composite for heparin sustaining release. J. Mater. Chem. B. 1, 3897–3905 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Park, G.Y. Lee, Y.S. Kim, M. Yu, R.W. Park, I.S. Kim, S.Y. Kim, Y. Byun, Heparin-deoxycholic acid chemical conjugated as an anticancer drug carrier and its antitumor activity. J. Control. Release. 114, 300–306 (2006)CrossRefGoogle Scholar
  23. 23.
    V. Hoffart, A. Lamprecht, P. Maincent, T. Lecompte, C. Vigneron, N. Ubrich, Oral bio-availability of a low molecular weight heparin using a polymeric delivery system. J. Controlled Release. 113, 38–42 (2006)CrossRefGoogle Scholar
  24. 24.
    I.A.W. Tan, B.H. Hameed, A.L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127, 111–119 (2007)CrossRefGoogle Scholar
  25. 25.
    M. El-Guendi, Homogeneous surface diffusion model of basic dyes tuffs onto natural clay in batch adsorbers. Adsorpt. Sci. Technol. 8, 217–225 (1991)CrossRefGoogle Scholar
  26. 26.
    H. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)Google Scholar
  27. 27.
    F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels. 12, 1100–1107 (1998)CrossRefGoogle Scholar
  28. 28.
    I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  29. 29.
    K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Enq. Chem. Fundam. 5, 212–223 (1966)CrossRefGoogle Scholar
  30. 30.
    T.W. Weber, R.K. Chakkravorti, Pore and solid diffusion models for fixed-bed adsorbers. AlChE J. 20, 228–238 (1974)CrossRefGoogle Scholar
  31. 31.
    S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetens kapsaka demiens Handlingar, 24(1898), 1–39Google Scholar
  32. 32.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Bio chem. 34, 451–465 (1999)CrossRefGoogle Scholar
  33. 33.
    W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60 (1963)Google Scholar
  34. 34.
    M. Özacar, I.A. Şengil, Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazard. Mater. 40, 1–14 (2003)Google Scholar
  35. 35.
    Z. Aksu, G. Do onmez, A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere. 50, 1075–1083 (2003)CrossRefGoogle Scholar
  36. 36.
    Z. Eren, F.N. Acar, Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination. 194, 1–10 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Chemistry and Chemical Engineering, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations