Journal of Porous Materials

, Volume 25, Issue 6, pp 1625–1632 | Cite as

Effect of preparation conditions of benzene bridged Ti incorporated periodic mesoporous organosilicas on selectivity improvement of cyclohexene epoxidation

  • Pengcheng He
  • Yibin Huang
  • Pei Yuan
  • Xia Yuan


Benzene bridged Ti incorporated periodic mesoporous organosilicas (Ti-PMOs) was prepared following an in situ hydrothermal method by using P123 as a structure directing agent in acidic condition, tetrabutyl titanate (TBOT) as titanium source, tetraethoxysilane (TEOS) as inorganic Si-source and 1, 4-bis(triethoxysilyl)benzene (BTEB) as organic Si-source. The effects of preparation conditions of Ti-PMOs, mole ratio of TEOS/BTEB and ageing time, on the catalytic performance for the cyclohexene epoxidation with tertbutyl hydroperoxide as an oxidant agent were investigated. By means of a variety of characterized method, the results showed that the proper mole ratio of TEOS/BTEB was 3:1, which was favor of maintaining good mesoporous structure, ageing time of preparation mixture solution was a key factor to improve the catalytic performance of Ti-PMOs. NH3-TPD indicated that sample prepared at ageing time 48 h had more readily exposed active titanium site, which significantly improve the selectivity of cyclohexene oxide to 97.7% from 37.7% at 24 h ageing time. The hydrophobic group of benzene bridged on the pore wall was benefit for the approach of cyclohexene and formation of the active tetravalent titanium.


Titanium PMOs 1,4-Bis(triethoxysilyl)benzene Aging time Cyclohexene epoxidation 



The authors thank the financial support from the National Natural Science Foundation of China (No. 21776237) and Hunan 2011 Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

Supplementary material

10934_2018_576_MOESM1_ESM.docx (182 kb)
Supplementary material 1 (DOCX 181 KB)


  1. 1.
    T. Asefa, M.J. MacLachlan, N. Coombs, G.A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 121, 9611–9614 (1999)CrossRefGoogle Scholar
  3. 3.
    B.J. Melde, B.T. Holland, C.F. Blanford, A. Stein, Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem. Mater. 11, 3302–3308 (1999)CrossRefGoogle Scholar
  4. 4.
    C. Vercaemst, M. Ide, P.V. Wiper, J.T.A. Jones, Y.Z. Khimyak, F. Verpoort, P.V.D. Voort, Ethenylene-bridged periodic mesoporous organosilicas: from E to Z. Chem. Mater. 21, 5792–5800 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Liu, Q.H. Yang, L. Zhang, H.Q. Yang, J.S. Gao, C. Li, Organic–inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater. 20, 4268–4275 (2008)Google Scholar
  6. 6.
    M.P. Kapoor, A.K. Sinha, S. Seelan, Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chem. Commun. 23, 2902–2903 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Asim, P.A. Mahendra, I. Shinji, Ammoximation of ketones catalyzed by titanium-containing ethane bridged hybrid mesoporous silsesquioxane. Chem. Commun. 28, 470–471 (2003)Google Scholar
  8. 8.
    Y.F. Lu, H.Y. Fan, N. Doke, Evaporation-induced self-assembly of hybrid-bridged silsesquioxane film and particulate mesophases with integral organic functionality. J. Am. Chem. Soc. 122, 5258–5261 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Corma, U. Díaz, T. García, G. Sastre, A. Am, Multifunctional hybrid organic–inorganic catalytic materials with a hierarchical system of well-defined micro- and mesopores. Chem. Soc. 132, 15011–15021 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Baleizao, B. Gigante, D. Das, M. Alvaro, H. Garcia, A. Corma, Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). Chem. Commun. 15, 1860–1861 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Yoshina-Ishii, T. Asefa, N. Coombs, M.J. Mac Lachlan, G.A. Ozin, Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry‘inside’ the channel walls of hexagonal mesoporous silica. Chem. Commun. 24, 2539–2540 (1999)CrossRefGoogle Scholar
  13. 13.
    M.P. Kapoor, Q. Yang, S. Inagaki, Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls. J. Am. Chem. Soc. 124, 15176–15177 (2002)CrossRefGoogle Scholar
  14. 14.
    M.D. McInall, J. Scott, L. Mercier, P.J. Kooyman, Super-microporous organic-integrated silica prepared by non-electrostatic surfactant assembly. Chem. Commun. 21, 2282–2283 (2001)CrossRefGoogle Scholar
  15. 15.
    O. Muth, C. Schellbach, M. Froba, Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores. Chem. Commun. 19, 2032–2033 (2001)CrossRefGoogle Scholar
  16. 16.
    X. Meng, T. Yokoi, D. Lu, T. Tatsumi, Synthesis and characterization of chiral periodic mesoporous organosilicas. Angew. Chem. Int. Ed. 46, 7796–7798 (2007)CrossRefGoogle Scholar
  17. 17.
    K. Landskron, B.D. Hatton, D.D. Perovic, G.A. Ozin, Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 Rings. Science 302, 266 (2003)CrossRefGoogle Scholar
  18. 18.
    G. Kickelbick, Hybrid inorganic–organic mesoporous materials, Angrew. Chem. Int. Ed. 43, 3102–3104 (2004)CrossRefGoogle Scholar
  19. 19.
    B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G.A. Ozin, Past, present, and future of periodic mesoporous organosilicas-the PMOs. Acc. Chem. Res. 38, 305–312 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Morishita, Y. Shiraishi, T. Hirai, Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation. J. Phys. Chem. B 110, 17898–17905 (2006)CrossRefGoogle Scholar
  21. 21.
    M.P. Kapoor, A. Bhaumik, S. Inagaki, K. Kuraoka, T. Yazawa, Titanium containing inorganic–organic hybrid mesoporous materials with exceptional activity in epoxidation of alkenes using hydrogen peroxide. J. Mater. Chem. 12, 3078–3083 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Arindam, N. Mahasweta, B. Asim, Titanium containing periodic mesoporous organosilica as an efficient catalyst for the epoxidation of alkenes. Catal. Today 198, 45–51 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Virginia, M.C. López, D.Q. Martha, M.J. Vieira, Synthesis of Ti-SBA-15 with low HCl content as catalysts in cyclohexene epoxidation. Catal. Today 172, 8–12 (2011)CrossRefGoogle Scholar
  24. 24.
    J.A. Melero, J. Iglesias, J.M. Arsuaga, J. Sainz-Pardo, P. Frutos, S. Blazquez, Synthesis and catalytic activity of organic-inorganic hybrid Ti-SBA-15 materials. J. Mater. Chem. 17, 377–385 (2007)CrossRefGoogle Scholar
  25. 25.
    J.A. Melero, J.M. Arsuaga, P.D. Frutos, J. Lglesias, J. Sainz, S. Blazquez, Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous Mesoporous Mater. 86, 364–373 (2005)CrossRefGoogle Scholar
  26. 26.
    P. Yuan, Y.B. Huang, X. Yuan, H.A. Luo, Ti incorporated periodic mesoporous organosilicas bridged with benzene or ethane group as catalyst in cyclohexene oxidation reaction. J. Mol. Catal. 29, 135–142 (2015)Google Scholar
  27. 27.
    S.S. Yoon, W.J. Son, K. Biswas, W.S. Ahn, Synthesis of periodic mesoporous organosilica by microwave heating. Bull. Korean. Chem. Soc. 29, 609–614 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Smeulders, C.J. Van Oers, K. Van Havenbergh, K. Houthoofd, M. Mertens, Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas. Chem. Eng. J. 175, 585–591 (2011)CrossRefGoogle Scholar
  29. 29.
    V. Parvulescu, C. Anastasescu, B.L. Su, Vanadium incorporated mesoporous silicates as catalysts for oxidation of alcohols and aromatics. J. Mol. Catal. A 198, 249–261 (2003)CrossRefGoogle Scholar
  30. 30.
    E. Gianotti, V. Dellarocca, L. Marchese, G. Martra, S. Coluccia, T. Maschmeyer, NH3 adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV–Vis–NIR and photoluminescence studies. Phys. Chem. Chem. Phys 4, 6109–6115 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringXiangtan UniversityXiangtanChina

Personalised recommendations