Journal of Porous Materials

, Volume 25, Issue 6, pp 1603–1609 | Cite as

Synthesis of a highly hydrophobic silica mesostructure by a modified co-condensation procedure and evaluation of its drug release capability

  • Marcela Bloise Costa
  • Marcos Augusto Bizeto


A highly hydrophobic silica mesostructure was synthesized by a modification on the conventional co-condensation procedure that involved the partial substitution of hexadecytltrimethylammonium, used as mesostructure directing agent, by hexadecyltrimethoxysilane. That modification allowed the production of a highly ordered hexagonal silica mesostructure with the mesopores partially filled with high amounts of hexadecyl chains, covalently bonded to inorganic framework. After extracting the reminiscent template molecules, ibuprofen was loaded into the mesostructure in order to evaluate its drug release properties. The drug loading amount (21 wt%) was comparable to the one reported for MCM-41 with grafted propylamine groups (25 wt%), indicating that C16-chains were not fully compacted occluding the pores. A slow ibuprofen release was observed in simulated body fluid (pH 7.2) by a process controlled by an anomalous transport with contribution of diffusional and relaxational components, according to the Korsmeyer-Peppas kinetics model. That hydrophobic mesostructure produced has the potential of being use as a carrier for low water soluble drugs with an extended delivery effect, but without the disadvantages of co-releasing toxic surfactant molecules or the need of non-toxic specific templates to be prepared.


Hexadecyltrimethoxysilane functionalization Hydrophobic mesoporous silica Drug delivery Molecular nanocontainer Ibuprofen release 



Authors are thankful to Prof. Vera R. L. Constantino (IQ-USP) and Ricardo Couto (IQ-USP) for the support on X-ray diffractometry and thermogravimetric experiments. M. A. Bizeto is thankful to the financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant 2011/50318-1). M. B. Costa is thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the research fellowship.

Supplementary material

10934_2018_574_MOESM1_ESM.docx (546 kb)
Supplementary material 1 (DOCX 546 KB)


  1. 1.
    V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)CrossRefGoogle Scholar
  2. 2.
    Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Yang, S. Gai, J. Lin, Chem. Soc. Rev. 41, 3679 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Walcarius, L. Mercier, J. Mater. Chem. 20, 4478 (2010)CrossRefGoogle Scholar
  5. 5.
    L.T. Gibson, Chem. Soc. Rev. 43, 5163 (2014)CrossRefGoogle Scholar
  6. 6.
    L.T. Gibson, Chem. Soc. Rev. 43, 5173 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Corma, H. Garcia, Adv. Synth. Catal. 348, 1391 (2006)CrossRefGoogle Scholar
  8. 8.
    M.P. Conley, C. Copéret, C. Thieuleux, ACS Catal. 4, 1458 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Rostamnia, E. Doustkhah, RSC Adv. 4, 28238 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Zhu, Y. Niu, Y. Li, Y. Gong, huihui Shi, Y. Liu, Q. Xu, Q.Q. Huo, Y. Liu, Q. Xu, J. Mater. Chem. B 5, 1339 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Moller, T. Bein, Chem. Mater. 10, 2950 (1998)CrossRefGoogle Scholar
  12. 12.
    A. Stein, B.J. Melde, R.C. Schroden, Adv. Mater. 12, 1403 (2000)CrossRefGoogle Scholar
  13. 13.
    M.H. Lim, A. Stein, Chem. Mater. 11, 3285 (1999)CrossRefGoogle Scholar
  14. 14.
    A. Walcarius, C. Delacôte, Chem. Mater. 15, 4181 (2003)CrossRefGoogle Scholar
  15. 15.
    N. Baccile, F. Babonneau, Microporous Mesoporous Mater. 110, 534 (2008)CrossRefGoogle Scholar
  16. 16.
    N.A. Vodolazkaya, C. Despas, B. Lebeau, C. Marichal, A. Walcarius, J. Sol-Gel Sci. Technol. 63, 587 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Huo, M. Li, X. Huang, H. Yang, S. Mann, Langmuir 30, 15047 (2014)CrossRefGoogle Scholar
  18. 18.
    J.S. Valenstein, K. Kandel, F. Melcher, I.I. Slowing, V.S.-Y. Lin, B.G. Trewyn, ACS Appl. Mater. Interfaces 4, 1003 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Quan, Y. Hu, X. Liu, C. Wei, Phys. Chem. Chem. Phys. 17, 19401 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Zou, Y. Hu, F. Cui, L. Jiang, D. Yu, H. Huang, J. Colloid Interface Sci. 417, 210 (2014)CrossRefGoogle Scholar
  21. 21.
    Q. Tang, Y. Xu, D. Wu, Y. Sun, Chem. Lett. 35, 474 (2006)CrossRefGoogle Scholar
  22. 22.
    Q. Tang, Y. Xu, D. Wu, Y. Sun, J. Wang, J. Xu, F. Deng, J. Control. Release 114, 41 (2006)CrossRefGoogle Scholar
  23. 23.
    Q. Tang, Y. Chen, J. Chen, J. Li, Y. Xu, D. Wu, Y. Sun, J. Solid State Chem. 183, 76 (2010)CrossRefGoogle Scholar
  24. 24.
    N.W. Clifford, K.S. Iyer, C.L. Raston, J. Mater. Chem. 18, 162 (2008)CrossRefGoogle Scholar
  25. 25.
    N. Vlachy, D. Touraud, J. Heilmann, W. Kunz, Colloids Surf B 70, 278 (2009)CrossRefGoogle Scholar
  26. 26.
    C.-H. Tsai, J.L. Vivero-Escoto, I.I. Slowing, I.-J. Fang, B.G. Trewyn, V.S.-Y. Lin, Biomaterials 32, 6234 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Botella, A. Corma, M. Quesada, J. Mater. Chem. 22, 6394 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)CrossRefGoogle Scholar
  29. 29.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  30. 30.
    F. Mariano-Neto, J.R. Matos, L.C. Cides da Silva, L.V. Carvalho, K. Scaramuzzi, O.A. Sant’Anna, C.P. Oliveira, M.C.A. Fantini, J. Phys. D 47, 425402 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Charnay, S. Bégu, C. Tourné-Péteilh, L. Nicole, D.A.A. Lerner, J.M.M. Devoisselle, Eur. J. Pharm. Biopharm. 57, 533 (2004)CrossRefGoogle Scholar
  32. 32.
    T. Azaïs, C. Tourné-Péteilh, F. Aussenac, N. Baccile, C. Coelho, J.-M. Devoisselle, F. Babonneau, Chem. Mater. 18, 6382 (2006)CrossRefGoogle Scholar
  33. 33.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985).CrossRefGoogle Scholar
  34. 34.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  35. 35.
    L.C. Fonseca, R. Faez, F.F. Camilo, M.A. Bizeto, Microporous Mesoporous Mater. 159, 24 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, Chem. Mater. 13, 308 (2001)CrossRefGoogle Scholar
  37. 37.
    B. Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mater. 15, 500 (2003)CrossRefGoogle Scholar
  38. 38.
    R.A. MacPhail, H.L. Strauss, R.G. Snyder, C.A. Elliger, J. Phys. Chem. 88, 334 (1984)CrossRefGoogle Scholar
  39. 39.
    R.G. Snyder, H.L. Strauss, C.A. Elliger, J. Phys. Chem. 86, 5145 (1982)CrossRefGoogle Scholar
  40. 40.
    N.V. Venkataraman, S. Vasudevan, J. Phys. Chem. B. 104, 11179 (2000)CrossRefGoogle Scholar
  41. 41.
    W. Wang, L. Li, S. Xi, J. Colloid Interface Sci. 155, 369 (1993)CrossRefGoogle Scholar
  42. 42.
    K.H.S. Kung, K.F. Hayes, Langmuir 9, 263 (1993)CrossRefGoogle Scholar
  43. 43.
    A.A. Freer, J.M. Bunyan, N. Shankland, D.B. Sheen, Acta Crystallogr. Sect. C 49, 1378 (1993)CrossRefGoogle Scholar
  44. 44.
    R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Int. J. Pharm. 15, 25 (1983)CrossRefGoogle Scholar
  45. 45.
    J. Siepmann, N.A. Peppas, Int. J. Pharm. 418, 6 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations