Advertisement

Inclusion complexes of eucalyptus essential oil with β-cyclodextrin: preparation, characterization and controlled release

Article

Abstract

In this study, eucalyptus essential oil (EEO) was encapsulated into β-cyclodextrin (β-CD) by saturated aqueous solution method. The success of EEO encapsulation was confirmed by laser light scatting, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimeter and thermogravimetric analysis. Releasing characteristics experiments were carried out at various temperatures, relative humidity (RH), storage time and high temperature stability test. Release kinetics of EEO from the inclusion complexes was investigated by zero-order kinetics, first-order kinetics and Avrami’s equation. The result showed that the release model of EEO from inclusion complexes fitted better for Avrami’s equation. Kinetics analysis based on the Avrami’s equation revealed that the release of EEO was accelerated with the increases of RH and temperature. For storage time treatment, the volatilization of EEO was significantly inhibited after encapsulation. High temperature stability test further revealed that EEO was protected after having been encapsulated into β-CD. For all treatments, the release parameter n was between 0.5 and 1.0, which presenting a diffusion-limited and first-order mode. These results indicated that encapsulation enhanced the stability and prolonged the acting time of EEO, and the release rate of EEO can also be passively controlled by the ambient temperature, humidity and storage time.

Keywords

EEO Inclusion complexes Characterization Controlled release Kinetics 

Notes

Acknowledgements

We are grateful for the funding from Aerospace Nutrition and Food Engineering Key Laboratory Open Fund (h2015631, China). Special thanks to the kind support from laboratory staff in Packaging engineering department of college of food science at South China Agriculture University.

References

  1. 1.
    S. Sansukcharearnpon, N. Wanichwecharungruang, T. Leepipatpaiboon, S. Kerdcharoen, Arayachukeat, Int. J. Pharm. 391, 267 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Burt, Int. J. Food Microbiol. 94, 223 (2004)CrossRefGoogle Scholar
  3. 3.
    B. Bagchi, S. Banerjee, A. Kool, P. Thakur, S. Bhandary, N.A. Hoque, S. Das, Phys. Chem. Chem. Phys. 18, 16775 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Sharafati Chaleshtori, M. Taghizadeh, M. Rafieian-Kopaei, R. Sharafati-Chaleshtori, J. Food Process. Preserv. 40, 396 (2016)CrossRefGoogle Scholar
  5. 5.
    P.J. Delaquis, K. Stanich, B. Girard, G. Mazza, Int. J. Food Microbiol. 74, 101 (2002)CrossRefGoogle Scholar
  6. 6.
    E.M.M. Afify, F.S. Ali, A.F. Turky, Asia. Pac. J. Trop. Biomed. 2, 24 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Kumar, S. Mishra, A. Malik, S. Satya, Acta Trop. 122, 212 (2012)CrossRefGoogle Scholar
  8. 8.
    A. EI Asbahani, K. Miladi, W. Badri, M. Sala, E.H. Ait Addi, H. Casabianca, A. El Mousadik, D. Hartmann, A. Jilale, F.N.R. Renaud, Int. J. Pharm. 483, 220 (2015)CrossRefGoogle Scholar
  9. 9.
    X.D. Liu, T. Furuta, H. Yoshii, P. Linko, W.J. Coumans, Biosci. Biotechnol. Biochem. 64, 1608 (2000).  https://doi.org/10.1271/bbb.64.1608 CrossRefGoogle Scholar
  10. 10.
    Z. Aytac, S.I. Kusku, E. Durgun, T. Uyar, Mater. Sci. Eng. C 63, 231  https://doi.org/10.1016/j.msec.2016.02.063 (2016)CrossRefGoogle Scholar
  11. 11.
    V. Venuti, R. Stancanelli, G. Acri, V. Crupi, G. Paladini, B. Testagrossa, S. Tommasini, C.A. Ventura, J. Mol. Struct. 1146, 512 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Calvo, Á.L. Castaño, M.T. Hernández, D. González-Gómez, Eur. J. Lipid Sci. Technol. 113, 1273 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Zhu, Z. Xiao, G. Zhu, R. Zhou, Y. Niu, Pol. J. Chem. Technol. 18, 110 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Yu, Adv. Mater. Res. 710, 195 (2013)CrossRefGoogle Scholar
  15. 15.
    Y.H. Cho, J. Park, Food Sci. Biotechnol. 18, 284 (2009)Google Scholar
  16. 16.
    C.S. Mangolim, C. Moriwaki, A.C. Nogueira, F. Sato, M.L. Baesso, A.M. Neto, G. Matioli, Food Chem. 153, 361 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Vlachou, M. Papamichael, A. Siamidi, A. Siamidi, P.A. Afoundakis, R. Kompogennitaki, Y. Dotsikas, Int. J. Mol. Sci. 18, 1641 (2017)Google Scholar
  18. 18.
    E.M.M.D. Valle, Process Biochem. 39, 1033 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Carrier, L. Miller, M. Ahmed, J. Control. Release 123, 78 (2007).  https://doi.org/10.1016/j.jconrel.2007.07.018 CrossRefGoogle Scholar
  20. 20.
    G. Rassu, E. Soddu, M. Cossu, A. Brundu, G. Cerri, N. Marchetti, L. Ferraro, R.F. Regan, P. Giunchedi, E. Gavini, A. Dalpiaz, J. Control. Release 201, 68 (2015).  https://doi.org/10.1016/j.jconrel CrossRefGoogle Scholar
  21. 21.
    E.H. Santos, J.A. Kamimura, L.E. Hill, C.L. Gomes, LWT-Food Sci. Technol. 60, 583 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Szwajca, H. Koroniak, Fluorine Chem. 167, 122 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Zhu, Z. Xiao, R. Zhou, G. Zhu, Y. Niu, Incl. Phenom. Macrocycl. Chem. 84, 219 (2016)CrossRefGoogle Scholar
  24. 24.
    S.H. Song, H.J. Lee, S.J. Chang, G.J. Woo, Food Sci. Biotechnol. 2, 132 (1993)Google Scholar
  25. 25.
    G. Delogu, C.C. Juliano, M. Usai, Nat. Prod. Res. 30, 2049 (2016)CrossRefGoogle Scholar
  26. 26.
    K. Munhuweyi, O.J. Caleb, A.J.V. Reenen, U.L. Opara, LWT-Food Sci. Technol. 87, 413 (2017)CrossRefGoogle Scholar
  27. 27.
    G.M. Petrovic´, G.S. Stojanovic´, N.S. Radulovic´, J. Med. Plants Res. 4, 1382 (2010)Google Scholar
  28. 28.
    J. Kytariolos, A.P. Dokoumetzidis, Eur. J. Pharm. Sci. 41, 299 (2010)CrossRefGoogle Scholar
  29. 29.
    K.G.H. Desai, H.J. Park, Drying Technol. 23, 1361 (2005)CrossRefGoogle Scholar
  30. 30.
    H.C. Babaoglu, A. Bayrak, N. Ozdemir, N. Ozgun, J. Food Process. Preserv. 41, e13202 (2017)CrossRefGoogle Scholar
  31. 31.
    W.C. Hsieh, C.P. Chang, Y.L. Gao, Colloids Surf. B 53, 209 (2006)CrossRefGoogle Scholar
  32. 32.
    Z. Dong, Y. Ma, K. Hayat, C. Jia, S. Xia, X. Zhang, J. Food Eng. 104, 455 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Wang, C. Qiu, G. Narsimhan, Z. Jin, Materials. 10, 10 (2017)Google Scholar
  34. 34.
    S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Acta Pol. Pharm. 67, 217 (2010)Google Scholar
  35. 35.
    P. Costa, J.M. Sousa Lobo, Eur. J. Pharm. Sci. 13, 123 (2001)CrossRefGoogle Scholar
  36. 36.
    M. Gibaldi, S. Feldman, J. Pharm. Sci. 56, 1238 (1967)CrossRefGoogle Scholar
  37. 37.
    H. Shiga, H. Yoshii, T. Nishiyama, P. Linko, Drying Technol. 19, 1385 (2001)CrossRefGoogle Scholar
  38. 38.
    H. Shiga, H. Yoshii, R. Taguchi, T. Nishiyama, T. Furuta, P. Linko, Biosci. Biotechnol. Biochem. 67, 426 (2003)CrossRefGoogle Scholar
  39. 39.
    K. Gao, X.J. Liu, X. Liu, Food Ind. 02, 58 (2015)Google Scholar
  40. 40.
    X. Dong, Z.T. Jiang, L.I. Rong, Food Sci. 21, 91 (2012)Google Scholar
  41. 41.
    Y.X. Lu, Y.Q. Tian, H.Q. Liu, A.Q. Zhang, X.U. Li, Pack Eng. 05, 84 (2016)Google Scholar
  42. 42.
    S.F. Hosseini, M. Zandi, M. Rezaei, F. Farahmandghavi, Carbohydr. Polym. 95, 50 (2013)CrossRefGoogle Scholar
  43. 43.
    B.T. Ho, D.C. Joyce, B.R. Bhandari, Food Chem. 129, 259 (2011)CrossRefGoogle Scholar
  44. 44.
    B.T. Ho, T.D. Yuwono, D.C. Joyce, B.R. Bhandari, J. Incl. Phenom. Macrocycl. Chem. 83, 281 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Noppakundilograt, P. Piboon, W. Graisuwan, R. Nuisin, S. Kiatkamjornwong, Carbohydr. Polym. 131, 23 (2015)CrossRefGoogle Scholar
  46. 46.
    D.Q. Falcão, A.R. Santos, B. Ortiz-Silva, R.P. Louro, R. Seiceira, P.V. Finotelli, J. Luiz, P. Ferreira, S.G.D. Simone, A.C.F. Amaral, Lat. Am. J. Pharm. 30, 765 (2011)Google Scholar
  47. 47.
    L.M. Gomes, N. Petito, V.G. Costa, D.Q. Falcão, K.G. De, Food Chem. 148, 428 (2014)CrossRefGoogle Scholar
  48. 48.
    P. Sutaphanit, P. Chitprasert, Food Chem. 150, 313 (2014)CrossRefGoogle Scholar
  49. 49.
    Y. Wang, Z.T. Jiang, R. Li, Eur. Food Res.Technol. 228, 865 (2009)CrossRefGoogle Scholar
  50. 50.
    L.C. Capozzi, M. Bazzano, M.C. Cavallero, C. Barolo, R. Buscaino, A. Ferri, M. Sangermano, D. Vallauri, R. Pisano, Int. Polym. Proc. J. Polym. Proc. Soc. 31, 570 (2016)CrossRefGoogle Scholar
  51. 51.
    C.S. Mangolima, C. Moriwaki, A.C. Nogueira, F. Sato, M.L. Baesso, A.M. Neto, G. Matioli, Food Chem. 153, 361 (2014)CrossRefGoogle Scholar
  52. 52.
    L.I. Zhu, Z.X. Chen, C.R. Luo, Food Sci. Technol. 03, 11 (2005)Google Scholar
  53. 53.
    G. Zhu, Z. Xiao, R. Zhou, Y. Zhu, Carbohydr. Polym. 75, 105 (2014)Google Scholar
  54. 54.
    T.A. Reineccius, G.A. Reineccius, T.L. Peppard, J. Food Sci. 67, 3271 (2002)CrossRefGoogle Scholar
  55. 55.
    M.M. Yallapu, M. Jaggi, S.C. Chauhan, Colloids Surf. B 79, 113 (2010)CrossRefGoogle Scholar
  56. 56.
    X. Li, Z. Jin, J. Wang, Food Chem. 103, 461 (2007)CrossRefGoogle Scholar
  57. 57.
    T.L. Neoh, H. Yoshii, T. Furuta, J. Incl. Phenom. Macrocycl. Chem. 56, 125 (2006)CrossRefGoogle Scholar
  58. 58.
    J.F. Ayala-Zavala, H. Soto-Valdez, A.G. Leo´n, E. A´lvarez-Parrilla, O. Martı´n-Belloso, G.A. Gonza´lez-Aguilar, J. Incl. Phenom. Macrocycl. Chem. 60, 359 (2008).  https://doi.org/10.1007/s10847-007-9385-1 CrossRefGoogle Scholar
  59. 59.
    M. Kfoury, L. Auezova, H. Greige-Gerges, K.L. Larsen, S. Fourmentin, Carbohydr. Polym. 151, 1245 (2016)CrossRefGoogle Scholar
  60. 60.
    L.P. Zhao, D. Han, H. Xiong, C.Q. Bai, Y.Z. Liu, B. Deng, S.H. Shi, Q. Wang, Food Sci. 31, 96 (2010)Google Scholar
  61. 61.
    M.C.B. Lira, M.S. Ferraz, M.E. D.G.V.C.D. Silva, K.I. Cortes, Teixeira et al., J. Incl. Phenom. Macrocycl. Chem. 64, 215 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoling Ren
    • 1
  • Shuli Yue
    • 1
  • Hong Xiang
    • 1
  • Meichun Xie
    • 1
  1. 1.College of Food ScienceSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations