Anatase TiO2 nanocrystals via dihydroxy bis (ammonium lactato) titanium (IV) acidic hydrolysis and its performance in dye-sensitized solar cells



The conventional way to synthesize anatase TiO2 with dihydroxy bis (ammonium lactato) titanium (IV) (TALH) is adjusting pH value of precursor solution to basic condition. In this paper, we prepared white color anatase TiO2 under acid condition via a hydrothermal route. TEM image shows the TiO2 has a sharp contour and crystallite size is about 5–10 nm. The TiO2 also has specific surface area of 97 m2/g and its average pore diameter is about 8.5 nm after sintering at 500 °C for 30 min. These characters make it to be a proper candidate for DSSCs’ photoanode. By comparing the DSSCs’ performance between the TiO2 we have synthesized (A35) and P25, A35 has energy conversion efficiency of 6.92% without any scattering layers, which was 17.9% higher than P25 photoanode. The higher specific area and good pore diameter distribution of A35 make photoanode absorb more dye molecules. The IPCE curve and dye absorbing experiment further confirmed the above mentioned results. DSSCs’ analysis revealed the white color anatase TiO2 could be achieved under acid condition when using TALH precursor.


Water-soluble precursor Acid condition Anatase TiO2 Dye sensitized solar cells 



We gratefully acknowledge the financial support by “chunhui” project of China national Ministry of Education (No. Z2015044), foundation for young scholars of Qinghai University (No. 2015-QGY-2) and foundation for young scholars of Qinghai Science & Technology Department (No. 2015-ZJ-932Q). Thank Dr. Rui and Dr. Hou for discussing.


  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Grätzel, R.A. Janssen, D.B. Mitzi, E.H. Sargent, Nature 488, 304–312 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Rui, L. Wang, J. Zhao, H. Wang, Y. Li, Q. Zhang, J. Xu, Appl. Surf. Sci. 369, 170–177 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Lupitskyy, V.K. Vendra, J. Jasinski, D.A. Amos, M.K. Sunkara, T. Druffel, Prog. Photovolt. 23, 883–891 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Hao, Y. Rui, Y. Li, Q. Zhang, H. Wang, Electrochim. Acta 117, 268–275 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Gao, Y. Rui, H. Wang, Y. Li, Q. Zhang, J. Phys. Chem. C 118, 16951–16958 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Kato, C. Nishiyama, T. Yabuta, M. Miyauchi, T. Hashimoto, T. Isobe, A. Nakajima, S. Matsushita, J. Porous Mater. 21, 165–176 (2014)CrossRefGoogle Scholar
  8. 8.
    N. Santhosh, R. Govindaraj, M. Senthil Pandian, P. Ramasamy, S. Mukhopadhyay, J. Porous Mate.r 23, 1483–1487 (2016)CrossRefGoogle Scholar
  9. 9.
    L.Y. Chen, Y.T. Yin, Nanoscale 5, 1777–1780 (2013)CrossRefGoogle Scholar
  10. 10.
    M. McCune, W. Zhang, Y. Deng, Nano Lett. 12, 3656–3662 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21, 3663–3667 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Zhang, R. Wu, H. Xu, F. Li, S. Wang, J. Wang, T. Zhang, RSC Adv. 7, 12446–12454 (2017)CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, L. Gao, J.K. Guo, Nanostruct. Mater. 11, 1293–1300 (1999)CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, L. Gao, Langmuir 19, 967–971 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Sun, L. Gao, J. Am. Ceram. Soc. 85, 2382–2384 (2002)CrossRefGoogle Scholar
  16. 16.
    B.E. Yoldas, J. Mater. Sci. 21, 1087–1092 (1986)CrossRefGoogle Scholar
  17. 17.
    F. Xu, K. Zhu, Y. Zhao, RSC Adv. 6, 98167–98170 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Fu, Y. Liu, Z. Shi, B. Li, W. Pang, J. Solid State Chem. 163, 427–435 (2002)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, S. Brown, J.B.M. Goodall, X. Weng, K. Thompson, K. Gong, S. Kellici, R.J.H. Clark, J.R.G. Evans, J.A. Darr, J. Alloys Compd. 476, 451–456 (2009)CrossRefGoogle Scholar
  20. 20.
    N.M. Kinsinger, A. Wong, D. Li, F. Villalobos, D. Kisailus, Cryst. Growth Des. 10, 5254–5261 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Pelentridou, E. Stathatos, P. Lianos, V. Drakopoulos, J. Nanosci. Nanotechnol. 10, 6093–6098 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Chigane, T. Shinagawa, J. Electrochem. Soc. 161, E40–E43 (2014)CrossRefGoogle Scholar
  23. 23.
    G.A. Seisenbaeva, G. Daniel, J.M. Nedelec, V.G. Kessler, Nanoscale 5, 3330–3336 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Möckel, M. Giersig, F. Willig, J. Mater. Chem. 9, 3051–3056 (1999)CrossRefGoogle Scholar
  25. 25.
    N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989–8994 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Yoshizawa, M. Kobayashi, V. Petrykin, H. Kato, M. Kakihana, J. Mater. Res. 29, 90–97 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin solid films 516, 4613–4619 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Qian, Y. Li, Q. Zhang, G. Shi, H. Wang, J. Alloy. Compd. 509, 10121–10126 (2011)CrossRefGoogle Scholar
  29. 29.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382–6390 (1993)CrossRefGoogle Scholar
  30. 30.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481–3487 (2000)CrossRefGoogle Scholar
  31. 31.
    J. Chae, M. Kang, J. Power Sources 196, 4143–4151 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206–2210 (2009)CrossRefGoogle Scholar
  33. 33.
    Z.Q. Li, Y. Ding, L.E. Mo, L.H. Hu, J.H. Wu, S.Y. Dai, ACS Appl. Mater. Int. 7, 22277–22283 (2015)CrossRefGoogle Scholar
  34. 34.
    B. Chi, L. Zhao, J. Li, J. Pu, Y. Chen, C. Wu, T. Jin, J. Nanosci. Nanotechnol. 8, 3877–3882 (2008)CrossRefGoogle Scholar
  35. 35.
    K. Pan, W. Zhou, G. Tian, Q. Pan, C. Tian, T. Xie, Y. Dong, D. Wang, H. Fu, Eur. J. Inorg. Chem. 2011, 4730–4737(2011)CrossRefGoogle Scholar
  36. 36.
    Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev 248, 1381–1389 (2004)CrossRefGoogle Scholar
  37. 37.
    D. Zheng, J. Xiong, P. Guo, Y. Li, H. Gu, J. Nanosci. Nanotechnol. 16, 613–618 (2016)CrossRefGoogle Scholar
  38. 38.
    W.C. Chang, B.H. Tang, Y.W. Lu, W.C. Yu, L.Y. Lin, R.J. Wu, J. Power Sources 319, 131–138 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.New Energy (Photovoltaic) Industry Research Center, Qinghai UniversityXiningPeople’s Republic of China
  2. 2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua UniversityShanghaiPeople’s Republic of China
  3. 3.Hebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations