Journal of Porous Materials

, Volume 25, Issue 5, pp 1407–1416 | Cite as

Pore-size-tunable nitrogen-doped polymeric frameworks for high performance sodium ion storage and supercapacitors

  • Jun Zhao
  • Ping Liu
  • Yuezeng Su
  • Dongqing Wu
  • Fan Zhang


Sodium-ion batteries (SIBs) is considered as a promising alternative to lithium-ion batteries. Supercapacitors (SCs) are receiving great attention for their significantly higher power density than batteries and prolonged cycle life. Herein, SIBs and SCs based on N-doped amorphous multi-size pores dominated polymeric frameworks were fabricated and examined. The enlarged interlayer spacing and multi-size-pore dominated interconnected architecture with high specific surface area, high pore volume and high N content optimize the electrochemical performance of N-PPF-20. As an anode material, N-PPF-20 exhibited a sodium ion storage capacity of 432.2 mAh g−1 at a current density of 0.05 A g−1, while maintaining a reversible capacity of 61.1 mAh g−1 at an ultrahigh current density of 20 A g−1. Additionally, a specific capacity of 158.3 mAh g−1 at 1 A g−1 was obtained after 1000 cycles, indicating an excellent cycling stability. When tested as an electrode material for SCs, N-PPF-20 delivered a high specific capacitance of 438.7 F g−1 at 0.1 A g−1, and a specific capacitance of 111.2 F g−1 was achieved even at a high current density of 10 A g−1. Meanwhile, a long-term cycling life test demonstrated a specific capacitance of 120 F g−1 at an ultrahigh current density of 10 A g−1 after 10,000 cycles.


Pore-size-tunable Polymeric frameworks Sodium ion storage Supercapacitors 



Financial support from National Natural Science Foundation of China (51403126, 61306018), the Science and Technology Commission of Shanghai Municipal (16JC1400703) are gratefully acknowledged. Lots of thank to the Instrumental Analysis Centre of Shanghai Jiao Tong University for the characterization of materials.

Supplementary material

10934_2017_553_MOESM1_ESM.docx (38.8 mb)
Supplementary material 1 (DOCX 39741 KB)


  1. 1.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114, 11636–11682 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Adv. Energy Mater. (2017). CrossRefGoogle Scholar
  4. 4.
    T. Lv, Y. Yao, N. Li, T. Chen, Angew. Chem. Int. Ed. 55, 9191–9195 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Xu, J. Wang, Z. Hu, R. Geng, L. Gan, Electrochim. Acta 231, 601–608 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefPubMedGoogle Scholar
  7. 7.
    Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Adv. Energy Mater. 4(8) (2014).
  8. 8.
    H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27, 7861–7866 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, H. Song, J. Mater. Chem. A 4, 6472–6478 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Carbon 94, 189–195 (2015)CrossRefGoogle Scholar
  11. 11.
    H.-G. Wang, Z. Wu, F.-l. Meng, D.-l. Ma, X.-l. Huang, L.-M. Wang, X.-B. Zhang, ChemSusChem 6, 56–60 (2013)CrossRefPubMedGoogle Scholar
  12. 12.
    J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, ACS Nano 7, 11004–11015 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Carbon 55, 328–334 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Bai, Z. Wang, C. Wu, R. Xu, F. Wu, Y. Liu, H. Li, Y. Li, J. Lu, K. Amine, ACS Appl. Mater. Interfaces. 7, 5598–5604 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    K. Tang, L. Fu, R.J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Adv. Energy Mater. 2, 873–877 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Nano Lett. 12, 3783–3787 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    X. Zhu, X. Yang, C. Lv, S. Guo, J. Li, Z. Zheng, H. Zhu, D. Yang, ACS Appl. Mater. Interfaces. 8, 18815–18821 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, H. Chen, Electrochim. Acta 246, 1088–1096 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, Adv. Mater. 27, 2042–2048 (2015)CrossRefPubMedGoogle Scholar
  20. 20.
    C. Jo, Y. Park, J. Jeong, K.T. Lee, J. Lee, ACS Appl. Mater. Interfaces. 7, 11748–11754 (2015)CrossRefPubMedGoogle Scholar
  21. 21.
    S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Nano Energy 12, 224–230 (2015)CrossRefGoogle Scholar
  22. 22.
    V.L. Chevrier, G. Ceder, J. Electrochem. Soc. 158, A1011–A1014 (2011)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, ACS Nano 6, 4319–4327 (2012)CrossRefPubMedGoogle Scholar
  24. 24.
    T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat Mater. 9, 146–151 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 8, 941–955 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas, L. Zhi, J. Am. Chem. Soc. 137, 219–225 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    J. Li, S. Chen, X. Zhu, X. She, T. Liu, H. Zhang, S. Komarneni, D. Yang, X. Yao, Adv. Sci. (2017).
  28. 28.
    J.-X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, J. Am. Chem. Soc. 130, 7710–7720 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    W. Tian, X. Mao, P. Brown, G.C. Rutledge, T.A. Hatton, Adv. Func. Mater. 25, 4803–4813 (2015)CrossRefGoogle Scholar
  30. 30.
    H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett. 11, 2472–2477 (2011)CrossRefPubMedGoogle Scholar
  31. 31.
    D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Adv. Func. Mater. 19, 1800–1809 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Liu, L. Pan, J. Jiang, X. Xi, X. Liu, D. Wu, Sci. Rep. 6, 21750 (2016)Google Scholar
  33. 33.
    L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nanoscale 6, 1384–1389 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, Y. Yang, Energy Environ. Sci. 5, 7950–7955 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Xiao, Y. Liu, P.a.. Hu, G. Yu, Y. Sun, D. Zhu, J. Am. Chem. Soc. 127, 8614–8617 (2005)CrossRefPubMedGoogle Scholar
  36. 36.
    P. Kuhn, A. Thomas, M. Antonietti, Macromolecules 42, 319–326 (2009)CrossRefGoogle Scholar
  37. 37.
    P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47, 3450–3453 (2008)CrossRefGoogle Scholar
  38. 38.
    Z. Jian, C. Bommier, L. Luo, Z. Li, W. Wang, C. Wang, P.A. Greaney, X. Ji, Chem. Mater. 29, 2314–2320 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Matsuo, K. Ueda, J. Power Sources 263, 158–162 (2014)CrossRefGoogle Scholar
  40. 40.
    H. Tang, D. Yan, T. Lu, L. Pan, Electrochim. Acta 241, 63–72 (2017)CrossRefGoogle Scholar
  41. 41.
    L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang, A. Thomas, J. Yang, L. Zhi, Energy Environ. Sci. 5, 9747–9751 (2012)CrossRefGoogle Scholar
  42. 42.
    D. Li, L. Zhang, H. Chen, J. Wang, L.-X. Ding, S. Wang, P.J. Ashman, H. Wang, J. Mater. Chem. A 4, 8630–8635 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Su, Y. Liu, P. Liu, D. Wu, X. Zhuang, F. Zhang, X. Feng, Angew. Chem. Int. Ed. 54, 1812–1816 (2015)CrossRefGoogle Scholar
  44. 44.
    D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, Adv. Energy Mater. 6(6) (2016).
  45. 45.
    E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 8, 7115–7129 (2014)CrossRefPubMedGoogle Scholar
  46. 46.
    J.P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 6, 2839–2855 (2013)CrossRefGoogle Scholar
  47. 47.
    T. Chen, Y. Liu, L. Pan, T. Lu, Y. Yao, Z. Sun, D.H.C. Chua, Q. Chen, J. Mater. Chem. A 2, 4117–4121 (2014)CrossRefGoogle Scholar
  48. 48.
    F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, J. Li, Carbon 91, 88–95 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Wang, W. Yu, J. Shi, N. Mao, S. Chen, W. Liu, Electrochim. Acta 188, 103–110 (2016)CrossRefGoogle Scholar
  50. 50.
    X.-F. Luo, C.-H. Yang, Y.-Y. Peng, N.-W. Pu, M.-D. Ger, C.-T. Hsieh, J.-K. Chang, J. Mater. Chem. A 3, 10320–10326 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, Energy Environ. Sci. 8, 2916–2921 (2015)CrossRefGoogle Scholar
  52. 52.
    X. Zhou, Y.-G. Guo, ChemElectroChem 1, 83–86 (2014)CrossRefGoogle Scholar
  53. 53.
    Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 5, 4033 (2014)Google Scholar
  54. 54.
    S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Func. Mater. 21, 3859–3867 (2011)CrossRefGoogle Scholar
  55. 55.
    D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 148, A803–A811 (2001)CrossRefGoogle Scholar
  56. 56.
    Z. Zhang, J. Zhang, X. Zhao, F. Yang, Carbon 95, 552–559 (2015)CrossRefGoogle Scholar
  57. 57.
    J. Zhang, Z. Zhang, X. Zhao, RSC Adv. 5, 104822–104828 (2015)CrossRefGoogle Scholar
  58. 58.
    J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, Adv. Mater. 29(6) (2017).
  59. 59.
    C. Bommier, T.W. Surta, M. Dolgos, X. Ji, Nano Lett. 15, 5888–5892 (2015)CrossRefPubMedGoogle Scholar
  60. 60.
    L. Miao, D. Zhu, Y. Zhao, M. Liu, H. Duan, W. Xiong, Q. Zhu, L. Li, Y. Lv, L. Gan, Microporous Mesoporous Mater. 253, 1–9 (2017)CrossRefGoogle Scholar
  61. 61.
    A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G. Wang, Chemistry 23, 3683–3690 (2017)CrossRefPubMedGoogle Scholar
  62. 62.
    Z. Niu, W. Zhou, X. Chen, J. Chen, S. Xie, Adv. Mater. 27, 6002–6008 (2015)CrossRefPubMedGoogle Scholar
  63. 63.
    Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6, 871–878 (2013)CrossRefGoogle Scholar
  64. 64.
    J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 9, 2556–2564 (2015)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations