Journal of Porous Materials

, Volume 25, Issue 5, pp 1309–1316 | Cite as

Rapid and phase pure synthesis of microporous copper silicate (CuSH–1Na) with 12-ring channel system

  • Armandina M. L. Lopes
  • Zhi Lin
  • Stanislav Ferdov


Phase pure sample of the microporous copper silicate CuSH–1Na has been obtained by simplified hydrothermal method without using additives (H2O2 and Na2HPO4). Ion exchange of Na+ by Cs+, Ca2+ and Sr2+ ions showed that the structure can suffer partial replacement of the charge compensating cations. Ion exchange with Cs+ resulted in distinct dehydration while the ion exchange with Sr2+ increased the total amount of water. Water content in the Ca-exchanged sample is comparable to the as-synthesized sodium phase. Raman spectroscopy revealed that the divalent cations as Ca2+ and Sr2+ induce stronger local structural deformations than the monovalent Cs+. These structural changes have been also followed by the refined lattice distortions. Magnetic analyses showed that CuSH–1Na presents a very weak ferromagnetic interaction along the Cu2+ chains with a nearly vanishing Curie–Weiss temperature. This magnetic coupling is associated with super-super-exchange interactions through Cu–Na–O–Na–Cu paths. Antiferromagnetic coupling, attributed to inter-chains super-super-exchange interactions, competes with the ferromagnetic one and prevails at the lowest temperature.


Microporous copper silicate CuSH–1Na Rapid synthesis Ion exchange Raman Thermal properties Magnetic properties 



This work was supported by the Portuguese Foundation for Science and Technology (IF/01516/2013 and IF/00686/2014).


  1. 1.
    J. Rocha, M.W. Anderson, Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem. 5, 801–818 (2000)CrossRefGoogle Scholar
  2. 2.
    K. Popa, C.C. Pavel, Radioactive wastewaters purification using titanosilicates materials: state of the art and perspectives. Desalination 293, 78–86 (2012)CrossRefGoogle Scholar
  3. 3.
    C.C. Pavel, K. Popa, Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chem. Eng. J. 245, 288–294 (2014)CrossRefGoogle Scholar
  4. 4.
    O. Oleksiienko, C. Wolkersdorfer, M. Sillanpaa, Titanosilicates in cation adsorption and cation exchange—a review. Chem. Eng. J. 317, 570–585 (2017)CrossRefGoogle Scholar
  5. 5.
    M.W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S.P. Mackay, A. Ferreira, J. Rocha, S. Lidin, Structure of the microporous titanosilicate Ets-10. Nature 367(6461), 347–351 (1994)CrossRefGoogle Scholar
  6. 6.
    D.M. Chapman, A.L. Roe, Synthesis, characterization and crystal-chemistry of microporous titanium-silicate materials. Zeolites 10(8), 730–737 (1990)CrossRefGoogle Scholar
  7. 7.
    M.S. Dadachov, J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson, Ab initio structure determination of layered sodium titanium silicate containing edge-sharing titanate chains (AM-4) Na-3(Na,H)Ti2O2[Si2O6]·2.2H2O. Chem. Commun. 24, 2371–2372 (1997)CrossRefGoogle Scholar
  8. 8.
    S. Ferdov, U. Kolitsch, O. Petrov, V. Kostov-Kytin, C. Lengauer, E. Tillmanns, Synthesis and crystal structure of a new microporous zircono silicate, MCV-2. Microporous Mesoporous Mater. 81(1–3), 79–86 (2005)CrossRefGoogle Scholar
  9. 9.
    S.R. Jale, A. Ojo, F.R. Fitch, Synthesis of microporous zirconosilicates containing ZrO6 octahedra and SiO4 tetrahedra. Chem. Commun. 5, 411–412 (1999)CrossRefGoogle Scholar
  10. 10.
    S.M. Kuznicki, D.T. Hayhurst, Synthesis of Ets-10, a new wide-pore titanium silicate molecular-sieve. Abs. Pap. Am. Chem. Soc. 202, 78-Petr (1991)Google Scholar
  11. 11.
    Z. Lin, J. Rocha, Small-pore framework zirconium and hafnium silicates with the structure of mineral tumchaite. Microporous Mesoporous Mater. 76(1–3), 99–104 (2004)CrossRefGoogle Scholar
  12. 12.
    Z. Lin, J. Rocha, Hydrothermal synthesis of the tin analogue of penkvilksite-2O. Eur. J. Mineral. 17(6), 869–873 (2005)CrossRefGoogle Scholar
  13. 13.
    Z. Lin, J. Rocha, P. Brandao, A. Ferreira, A.P. Esculcas, J.D.P. deJesus, A. Philippou, M.W. Anderson, Synthesis and structural characterization of microporous umbite, penkvilksite, and other titanosilicates. J. Phys. Chem. B 101(36), 7114–7120 (1997)CrossRefGoogle Scholar
  14. 14.
    Z. Lin, J. Rocha, J.D.P. de Jesus, A. Ferreira, Synthesis and structure of a novel microporous framework stannosilicate. J. Mater. Chem. 10(6), 1353–1356 (2000)CrossRefGoogle Scholar
  15. 15.
    R.P. Nikolova, K. Fujiwara, N. Nakayama, V. Kostov-Kytin, Crystal structure of a new small-pore zirconosilicate Na2ZrSi2O7·H2O and its relation to stoichiometrically and topologically similar compounds. Solid State Sci. 11(2), 382–388 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Rocha, P. Brandao, Z. Lin, M.W. Anderson, V. Alfredsson, O. Terasaki, The first large-pore vanadosilicate framework containing hexacoordinated vanadium. Angew. Chem. Int. Ed. Engl. 36(1–2), 100–102 (1997)CrossRefGoogle Scholar
  17. 17.
    X.Q. Wang, L.M. Liu, A.J. Jacobson, Open-framework and microporous vanadium silicates. J. Am. Chem. Soc. 124(26), 7812–7820 (2002)CrossRefPubMedGoogle Scholar
  18. 18.
    X.Q. Wang, L.M. Liu, A.J. Jacobson, The novel open-framework vanadium silicates K-2(VO)(Si4O10)·H2O (VSH-1) and Cs-2(VO)(Si6O14)·3H2O (VSH-2). Angew. Chem. Int. Ed. 40(11), 2174–2176 (2001)CrossRefGoogle Scholar
  19. 19.
    D.M. Poojary, R.A. Cahill, A. Clearfield, Synthesis, crystal-structures, and ion-exchange properties of a novel porous titanosilicate. Chem. Mater. 6(12), 2364–2368 (1994)CrossRefGoogle Scholar
  20. 20.
    Z. Lin, J. Rocha, A. Valente, Synthesis and characterisation of a framework microporous stannosilicate. Chem. Commun. 24, 2489–2490 (1999)CrossRefGoogle Scholar
  21. 21.
    R. Millini, A. Carati, G. Bellussi, G. Cruciani, W.O. Parker, C. Rizzo, S. Zanardi, Synthesis, characterization and crystal structure of EMS-2—a novel microporous stannosilicate. Microporous Mesoporous Mater. 101(1–2), 43–49 (2007)CrossRefGoogle Scholar
  22. 22.
    M.A.R. Peixoto, S. Ferdov, Crystal structure, thermal flexibility and structural transformations of tin umbite and copper exchanged tin umbite prepared from clear solution. J. Porous Mater. 20(5), 1171–1178 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, D.L. He, Y.C. Zou, S.J. Ma, F.S. Xiao, Synthesis and characterization of a novel microporous framework stannosilicate. Chem. J. Chin. Univ. 31(4), 635–637 (2010)Google Scholar
  24. 24.
    S. Zanardi, A. Carati, G. Cruciani, G. Bellussi, R. Millini, C. Rizzo, Synthesis, characterization and crystal structure of new microporous bismuth silicates. Microporous Mesoporous Mater. 97(1–3), 34–41 (2006)CrossRefGoogle Scholar
  25. 25.
    D. Ananias, S. Ferdov, F.A.A. Paz, R.A.S. Ferreira, A. Ferreira, C.F.G.C. Geraldes, L.D. Carlos, Z. Lin, J. Rocha, Photoluminescent layered lanthanide silicate nanoparticles. Chem. Mater. 20(1), 205–212 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Ananias, A. Ferreira, J. Rocha, P. Ferreira, J.P. Rainho, C. Morais, L.D. Carlos, Novel microporous europium and terbium silicates. J. Am. Chem. Soc. 123(24), 5735–5742 (2001)CrossRefPubMedGoogle Scholar
  27. 27.
    D. Ananias, M. Kostova, F.A.A. Paz, A. Ferreira, L.D. Carlos, J. Klinowski, J. Rocha, Photoluminescent layered lanthanide silicates. J. Am. Chem. Soc. 126(33), 10410–10417 (2004)CrossRefPubMedGoogle Scholar
  28. 28.
    A. Ferreira, D. Ananias, L.D. Carlos, C.M. Morais, J. Rocha, Novel microporous lanthanide silicates with tobermorite-like structure. J. Am. Chem. Soc. 125(47), 14573–14579 (2003)CrossRefPubMedGoogle Scholar
  29. 29.
    S.M. Kuznicki, V.A. Bell, S. Nair, H.W. Hillhouse, R.M. Jacubinas, C.M. Braunbarth, B.H. Toby, M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules (vol 412, pg 720, 2001). Nature 413(6856), 652–652 (2001)CrossRefGoogle Scholar
  30. 30.
    F.X.L.I. Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 125(8), 2264–2271 (2003)CrossRefGoogle Scholar
  31. 31.
    K. Popa, C.C. Pavel, N. Bilba, A. Cecal, Purification of waste waters containing Co-60(2+), Cd-115m(2+) and Hg-203(2+) radioactive ions by ETS-4 titanosilicate. J. Radioanal. Nucl. Chem. 269(1), 155–160 (2006)CrossRefGoogle Scholar
  32. 32.
    M.L. Pinto, J. Rocha, J.R.B. Gomes, J. Pires, Slow release of NO by microporous titanosilicate ETS-4. J. Am. Chem. Soc. 133(16), 6396–6402 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    S. Ferdov, E. Shikova, Z. Ivanova, L.T. Dimowa, R.P. Nikolova, Z. Lin, B.L. Shivachev, A microporous titanosilicate for selective killing of HeLa cancer cells. RSC Adv. 3(23), 8843–8848 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Ferdov, Low-density macroporous foams obtained from a molecular sieve by temperature-induced amorphization. Angew. Chem. Int. Ed. 52(46), 12135–12138 (2013)CrossRefGoogle Scholar
  35. 35.
    X.Q. Wang, L.M. Liu, A.J. Jacobson, Nanoporous copper silicates with one-dimensional 12-ring channel systems. Angew. Chem. Int. Ed. 42(18), 2044–2047 (2003)CrossRefGoogle Scholar
  36. 36.
    X.Q. Wang, L.M. Liu, L.B. Wang, A.J. Jacobson, Hydrothermal synthesis and structures of the open-framework copper silicates Na-2[Cu2Si4O11](H2O)(2) (CuSH-2Na), Na-2[CuSi3O8] (CuSH-3Na), Cs2Na4[Cu2Si12O7(OH)(2)](OH)(2) (CuSH-4NaCs), and Na-2[Cu2Si5O13](H2O)(3) (CuSH-6Na). Solid State Sci. 7(11), 1415–1422 (2005)CrossRefGoogle Scholar
  37. 37.
    S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon, CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science 350(6258), 302–306 (2015)CrossRefPubMedGoogle Scholar
  38. 38.
    A. Le Bail, Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr. 20(4), 316–326 (2005)CrossRefGoogle Scholar
  39. 39.
    R.D. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(Sep1), 751–767 (1976)CrossRefGoogle Scholar
  40. 40.
    G.J. Kramer, N.P. Farragher, B.W.H. Vanbeest, R.A. Vansanten, Interatomic force-fields for silicas, aluminophosphates, and zeolites—derivation based on abinitio calculations. Phys. Rev. B 43(6), 5068–5080 (1991)CrossRefGoogle Scholar
  41. 41.
    A.J.M. Deman, R.A. Vansanten, The relation between zeolite framework structure and vibrational-spectra. Zeolites 12(3), 269–279 (1992)CrossRefGoogle Scholar
  42. 42.
    R.L. Frost, Y.F. Xi, Raman spectroscopic study of the mineral shattuckite Cu-5(SiO3)(4)(OH)(2). Spectrochim. Acta Part A 87 (2012) 241–244CrossRefGoogle Scholar
  43. 43.
    M. Tribaudino, L. Mantovani, D. Bersani, P.P. Lottici, Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. Am. Mineral. 97(8–9), 1339–1347 (2012)CrossRefGoogle Scholar
  44. 44.
    P.K. Dutta, B. Delbarco, Raman-spectroscopic studies of zeolite framework—hydrated zeolite a and the influence of cations. J. Phys. Chem. 89(10), 1861–1865 (1985)CrossRefGoogle Scholar
  45. 45.
    S. Nair, M. Tsapatsis, B.H. Toby, S.M. Kuznicki, A study of heat-treatment induced framework contraction in strontium-ETS-4 by powder neutron diffraction and vibrational spectroscopy. J. Am. Chem. Soc. 123(51), 12781–12790 (2001)CrossRefPubMedGoogle Scholar
  46. 46.
    J.C. Bonner, M.E. Fisher, Linear magnetic chains with anisotropic coupling. Phys. Rev. 135(3A), A640 (1964)CrossRefGoogle Scholar
  47. 47.
    B. Zhang, Y. Zhang, Z.M. Wang, D.W. Wang, P.J. Baker, F.L. Pratt, D.B. Zhu, Candidate quantum spin liquid due to dimensional reduction of a two-dimensional honeycomb lattice. Sci. Rep. 4 (2014)Google Scholar
  48. 48.
    S. Bala, S. Bhattacharya, A. Goswami, A. Adhikary, S. Konar, R. Mondal, Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des. 14(12), 6391–6398 (2014)CrossRefGoogle Scholar
  49. 49.
    P. Brandao, M.S. Reis, Z. Gai, A.M. dos Santos, Novel alkaline earth copper germanates with ferro and antiferromagnetic S = 1/2 chains. J. Solid State Chem. 198, 39–44 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Blundell, Magnetism in Condensed Matter. (Oxford University Press, Oxford, 2001)Google Scholar
  51. 51.
    J.B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-Xsrxcoo3-λ. J. Phys. Chem. Solids 6(2–3), 287–297 (1958)CrossRefGoogle Scholar
  52. 52.
    H.J. Koo, D. Dai, M.H. Whangbo, Importance of supersuperexchange interactions in determining the dimensionality of magnetic properties. Determination of strongly interacting spin exchange paths in A(2)CU(PO4)(2) (A = Ba, Sr), ACuP(2)O(7) (Ba, Ca, Sr, Pb), CaCuGe2O6, and Cu2UO2(PO4)(2) on the basis of qualitative spin dimer analysis. Inorg. Chem. 44(12), 4359–4365 (2005).CrossRefPubMedGoogle Scholar
  53. 53.
    M.H. Whangbo, H.J. Koo, D. Dai, D. Jung, Interpretation of the magnetic structures of Cu2Te2O5 × 2 (X = Cl, Br) and Ca3.1Cu0.9RuO6 on the basis of electronic structure considerations: cases for strong super-superexchange interactions involving Cu2+ ions. Inorg. Chem. 42(12), 3898–3906 (2003)CrossRefPubMedGoogle Scholar
  54. 54.
    J. Deisenhofer, R.M. Eremina, A. Pimenov, T. Gavrilova, H. Berger, M. Johnsson, P. Lemmens, H.A.K. von Nidda, A. Loidl, K.S. Lee, M.H. Whangbo, Structural and magnetic dimers in the spin-gapped system CuTe2O5. Phys. Rev. B 74(17) (2006)Google Scholar
  55. 55.
    H.J. Koo, K.S. Lee, M.H. Whangbo, Spin dimer analysis of the magnetic structures of Ba3Cr2O8, Ba3Mn2O8, Na4FeO4, and Ba2CoO4 with a three-dimensional network of isolated MO4 (M = Cr, Mn, Fe, Co) tetrahedra. Inorg. Chem. 45(26), 10743–10749 (2006)CrossRefPubMedGoogle Scholar
  56. 56.
    R. Nath, K.M. Ranjith, J. Sichelschmidt, M. Baenitz, Y. Skourski, F. Alet, I. Rousochatzakis, A.A. Tsirlin, Hindered magnetic order from mixed dimensionalities in CuP2O6. Phys. Rev. B 89(1) (2014)Google Scholar
  57. 57.
    R. Nath, A.A. Tsirlin, E.E. Kaul, M. Baenitz, N. Buttgen, C. Geibel, H. Rosner, Strong frustration due to competing ferromagnetic and antiferromagnetic interactions: Magnetic properties of M(VO)(2)(PO(4))(2) (M = Ca and Sr). Phys. Rev. B 78(2) (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.IFIMUP and IN - Institute of Nanoscience and NanotechnologyDepartamento de Física e Astronomia da Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Department of Chemistry, CICECO - Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal
  3. 3.Department of PhysicsUniversity of MinhoGuimarãesPortugal

Personalised recommendations