Advertisement

Journal of Porous Materials

, Volume 25, Issue 4, pp 1245–1250 | Cite as

Synthesis of carbon microspheres under ambient pressure

  • Youming Wang
  • Peirong Chen
  • Yulong Zhou
  • Lifang He
  • Jian Zhang
  • Suwen Zhu
  • Beijiu Cheng
Article
  • 92 Downloads

Abstract

A convenient and simple method for the synthesis of carbon microspheres (CMSs) by hydrothermal procedure at very low temperature of 95 °C has been developed. This method used glucose as the precursor to prepare CMSs in the presence of hydrochloric acid under ambient pressure and greatly reduce the reaction temperature. XRD, SEM, FT-IR and Raman spectroscopy were used to characterize the as-synthesized products. The results indicated that polymerization and yield of CMSs under ambient pressure were promoted by hydrochloric acid and there were abundant of –OH and –C=O chemical groups on the surface of the as-prepared CMSs. This work should be valuable to facilitate cost-efficient conversion of biomass into bio-based products.

Keywords

Carbon microspheres Ambient pressure Low temperature 

Notes

Acknowledgements

The authors gratefully acknowledge the support of this research by the National Natural Science Foundation young investigator grant program (Grant No.61603001), and National University Students Innovation Project of China (Grant No. 201710364011).

References

  1. 1.
    J.L. Liang, Y.H. Liu, T.B. Zhang, Proced. Environ. Sci. 11, 1322–1327 (2011)CrossRefGoogle Scholar
  2. 2.
    Z.H. Wen, Q. Wang, J.H. Li, Electrochem. Commun. 8, 1867–1872 (2007)CrossRefGoogle Scholar
  3. 3.
    J.L. Wua, F. Hua, X. Hub, Z. Weic, P.K. Shen, Electronchim. Acta 53, 8341–8345 (2008)CrossRefGoogle Scholar
  4. 4.
    N. Koprinarov, M. Konstantinova, J. Mater. Sci. 46, 1494–1501 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Mullen, Adv. Mater. 22, 838–842 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Zhang, H. Yang, Y.N. Liu, X.D. Sun, D.K. Zhang, D.F. Xue, Carbon 50, 2155–2161 (2012)CrossRefGoogle Scholar
  7. 7.
    Y.Z. Mi, W.B. Hu, Y.M. Dan, Y.L. Liu, Mater. Lett. 62, 1194–1196 (2008)CrossRefGoogle Scholar
  8. 8.
    Z.H. Zhuang, Z.G. Yang, J. Appl. Polym. Sci. 114, 3863–3869 (2009)CrossRefGoogle Scholar
  9. 9.
    X. Yan, F. Jin, K. Tohji, T. Moriya, H. Enomoto, J. Mater. Sci. 42, 9995–9999 (2007)CrossRefGoogle Scholar
  10. 10.
    Z.H. Xue, P.R. Chen, Q. Yang, L.F. He, S.H. Mu, B.J. Cheng, J. Mater. Sci. 49, 2180–2186 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Li, W. Li, S.X. Liu, J. Mater. Res. 27, 1117–1123 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Krishnamurthy, R. Namitha, Adv. Sci. Eng. Med. 5, 726–730 (2013)CrossRefGoogle Scholar
  13. 13.
    X.G. Yang, C. Li, W. Wang, B.J. Yang, S.Y. Zhang, Y.T. Qian, Chem. Commun. 3, 342–343 (2004)CrossRefGoogle Scholar
  14. 14.
    X.D. Yang, C.S. Shi, E.Z. Liu, X.N. He, X.W. Du, J.J. Li, N.P. Zhao, Mater. Lett. 72, 164–167 (2012)CrossRefGoogle Scholar
  15. 15.
    S.X. Liu, J. Sun, Z.H. Huang, J. Hazard. Mater. 173, 377–383 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Sevilla, A.B. Fuertes, Carbon 47, 2281–2289 (2009)CrossRefGoogle Scholar
  17. 17.
    X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 43, 597–601 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Falco, N. Baccile, M.M. Titirici, Green Chem. 13, 3273–3281 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Watanabe, T.M. Aida, J. Smith, Green. Chem. 11, 1327–1331 (2009)CrossRefGoogle Scholar
  20. 20.
    C.H. Li, Z.B. Zhao, A. Wang, M.Y. Zheng, T. Zhang, Carbohyd. Res. 345, 1846–1850 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Science 31, 1933–1937 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Román-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Nature 447, 982–985 (2007)CrossRefGoogle Scholar
  23. 23.
    X.H. Qi, M. Watanabe, T.M. Aida, R.L. Smith, Green. Chem. 11, 1327–1331 (2009)CrossRefGoogle Scholar
  24. 24.
    C.Z. Li, Z.B. Zhao, A.Q. Wang, M.Y. Zheng, T. Zhang, Carbohyd. Res. 345, 1846–1850 (2010)CrossRefGoogle Scholar
  25. 25.
    Z.H. Zhang, Z.B. Zhao, Bioresoour. Technol. 102, 3970–3972 (2011)CrossRefGoogle Scholar
  26. 26.
    S.P. Utami, N.S. Amin, Ind. Crops. Prod. 41, 64–70 (2013)CrossRefGoogle Scholar
  27. 27.
    V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)CrossRefGoogle Scholar
  28. 28.
    K.U. Lee, M.J. Kim, K.J. Park, M. Kim, O.J. Kwon, J.J. Kim, Mater. Lett. 125, 213–217 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Biomass and Energy of Education Department of Anhui ProvinceAnhui Agricultural UniversityHefeiChina
  2. 2.Department of Applied Chemistry, School of ScienceAnhui Agricultural UniversityHefeiChina

Personalised recommendations