Journal of Porous Materials

, Volume 25, Issue 4, pp 1183–1193 | Cite as

Preparation and characterization of macroporous SiC ceramic membrane for treatment of waste water

  • Dulal Das
  • Sanchita Baitalik
  • Barun Haldar
  • Rajnarayan Saha
  • Nijhuma KayalEmail author


Porous SiC based materials present high mechanical, chemical and thermal robustness and thus have been largely applied to water-filtration technologies. In this study, circular disc shaped SiC microfiltration membranes were prepared by dry pressing of commercially available SiC powder with yttria and alumina as additives followed by a low-cost oxide bonding technique. The membranes fabricated were characterized using standard characterization techniques like Scanning Electron Microscopy (SEM), Powder X-ray Diffraction (PXRD), porosity and pore size distribution analysis and compared with the membrane prepared by liquid phase sintering route from the same powder composition. Finally, water permeation studies were carried out in a standard membrane module and clean water flux was determined. These membranes were found well suited for treatment of oily waste water and grey water. The membrane prepared by oxide bonding method effectively removed ~ 89–93% of COD, ~ 77–86% of oil/grease and 88.4–92% of TSS from kitchen waste water and the removal efficiency are better compared to the membrane prepared by liquid phase sintering method. The effects of corrosions on the membranes were investigated in strong acid and alkali solution at 90 °C. The membranes prepared by oxide bonding method showed better corrosion resistance with retention of mechanical strength.


Macroporous SiC membrane Corrosion Filtration 



Authors would like to acknowledge CSIR, India for financial support under 12th five year plan project, CERMESA- ESC0104.


  1. 1.
    S. Hanft, The north American market for produced water treatment equipment. BCC Research Report# ENV014A, October (2012)Google Scholar
  2. 2.
    Water Use in Indian Industry Survey, FICCI Water Mission, New Delhi, September, (2011)
  3. 3.
    K.S. Ashaghi, M. Ebrahimi, P. Czermak, Ceramic Ultra-, Nano-filtration membranes for oilfield produced water treatment: a mini review. Open Environ. J. 1, 1–8 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Falsanisi, L. Liberti, M. Notarnicola, Ultrafiltration (UF) pilot plant for municipal wastewater reuse in agriculture: impact of the operation mode on process performance. Water 1, 872–885 (2009)Google Scholar
  5. 5.
    H.F. Lin, Ceramic membrane technology applied to oily wastewater separation. PhD dissertation: Hong Kong Polytechnic University, Japan, (2006)Google Scholar
  6. 6.
    I.S. Chang, S.J. Judd, Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging. Water Sci. Technol. 47, 149–154 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Ebrahimi, K.S. Ashaghi, L. Engel, D. Willershausen, P. Mund, P. Bolduan, P. Czermak, Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination 245, 533–540 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Buekenhoudt, Stability of porous ceramic membranes, In Inorganic Membranes; Synthesis, Characterization and Applications, ed. by R. Mallada, M. Menendez (Elsevier, Amsterdam, 2008), pp. 1–31Google Scholar
  9. 9.
    A. Lerch, S. Panglishch, P. Buchta, Y. Tomitac, H. Yonekawa, K. Hattori, R. Gimbel, Direct river water treatment using coagulation/ceramic microfiltration. Desalination 179, 41–50 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Shirasaki, T. Matshushita, Y. Matsui, K. Ohno, Effects of reversible and irreversible membrane fouling on virus removal by a coagulation microfiltration system. J. Water Suppl. Res. Technol. 57, 501–506 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Wandera, Design of advanced fouling-resistant and self-cleaning membranes for treatment of oily and impaired waters. University of Clemson, United States: Ph.D dissertation, (2012)Google Scholar
  12. 12.
    B. Hofs, J. Ogier, D. Vries, E.F. Beerendonk, E.F. Cornelissen, Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 79, 365–374 (2011)CrossRefGoogle Scholar
  13. 13.
    K. Hagen, Ultra and Microfiltration for dam water treatment, In Reports of the Rheinisch-Westfaelischem Institut fuer wasserchemie und wasserteechnologie GmbH, Muelheim vol. 16 (1996) 131–142 ISSN0941-0961 (in German)Google Scholar
  14. 14.
    M. Piwonski, Ceramic membranes on basis of LPS-SiC. (PhD Tehnical University, Dresden, 2005) (German)Google Scholar
  15. 15.
    R. Neufert, M. Moeller, A.K. Bakshi, Dead-end silicon carbide micro-filters for liquid filtration, Advances in Bioceramics and Porous Ceramics VI: Ceramic Engineering and Science Proceedings, 34, 115–126, (2013)Google Scholar
  16. 16.
    K. Konig, V. Boffa, B. Buchbjerg, Y. Yue, One step deposition of ultrafine SiC membranes on macroporous SiC supports. J. Membr. Sci. 472, 232–240 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Marco, B. Vittorio, M. Giuliana, J.L. Berg, K. Peter, K.F. Ali, K. Katja, C.M. Lykkegaard, Y. Yuanzheng, Deposition of thin ultrafine membranes on commercial SiC microfiltration tubes. Ceram. Int. 40, 3277–3285 (2014)CrossRefGoogle Scholar
  18. 18.
    A.K. Bakshi, R. Ghimire, E. Sheridan, M. Kuhn, Treatment of produced water using silicon carbide membrane filters, Advances in Bioceramics and Porous Ceramics VIII: Ceramic Engineering and Science Proceedings 36(5), 89–106, (2015)Google Scholar
  19. 19.
    P. de Wit, E.J. Kappert, T. Lohaus, M. Wessling, A. Nijmeijer, N.E. Benes, Highly permeable and mechanically robust silicon carbide hollow fiber membranes”. J. Membr. Sci. 475, 480–487 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Maria, SandraSanches Fraga, JoãoG. Crespo, J. Vanessa, Pereira, Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters. Membranes 12(7) (2017).
  21. 21.
    AliHeydari Beni, Screening of microfiltration and ultrafiltration ceramic membranes for produced water treatment and testing of different cleaning methods, Thesis Master of Applied Science in Process Systems Engineering University of Regina, Regina, Saskatchewan, April, (2014)Google Scholar
  22. 22.
    MengistuMeron Mulatu, Silicon carbide-based capillary membranes for gas separation and water treatment, EM3E Master Thesis, Universidad Zaragoza, European Master Erasmus Mundus Master in membrane engineering, Institus Euorpeen des Membrnaes, June, (2014)Google Scholar
  23. 23.
    S.H. Kim, Y.-W. Kim, J.-Y. Yun, H.D. Kim, Fabrication of porous SiC ceramics by partial sintering and their properties. J. Kor. Ceram Soc. 41, 541–546 (2004)CrossRefGoogle Scholar
  24. 24.
    Y.-W. Kim, S.-H. Kim, I.-H. Song, H.-D. Kim, C.B. Park, Fabrication of open-cell microcellular silicon carbide ceramics by carbothermal reduction. J. Am. Ceram. Soc. 88(10), 2949–2951 (2005)CrossRefGoogle Scholar
  25. 25.
    I.-K. Sung, S.-B. Yoon, J.-S. Yu, D.-P. Kim, Fabrication of macro porous SiC from templated preceramic polymers., Chem. Commun. 14, 1480–1481 (2002)CrossRefGoogle Scholar
  26. 26.
    S. Zhu, S. Ding, H. Xi, R. Wang, Low temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater. Lett. 59, 595–597 (2005)CrossRefGoogle Scholar
  27. 27.
    J.-H. She, Z.Y. Deng, J.D. Doni, T. Ohji, Oxidation bonding of porous silicon carbide ceramics. J. Mater. Sci. 37, 3615–3622 (2002)CrossRefGoogle Scholar
  28. 28.
    S.C. Kim, Y.-W. Kim, I.H. Song, Processing and properties of glass-bonded silicon carbide membrane supports. J. Eur. Ceram. Soc. 37(4), 1225–1232 (2017)CrossRefGoogle Scholar
  29. 29.
    S.C. Kim, H.J. Yeom, Y.-W. Kim, I.H. Song, J.H. Ha, Processing of alumina-coated glass-bonded silicon carbide membranes for oily wastewater treatment. Int. J. Appl. Ceram. Technol. 14(4), 692–702 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Zaighum, A. Bukhari, J.-H. Ha, J. Lee, I.-H. Song, Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration application. Ceram. Int. 43, 7736–7742 (2017)CrossRefGoogle Scholar
  31. 31.
    P.H. Pastila, V. Helanti, A.-P. Nikkilä, T. Mäntylä, Environmental effects on microstructure and strength of SiC-based hot gas filters. J. Eur. Ceram. Soc. 21(9), 1261–1268 (2001)CrossRefGoogle Scholar
  32. 32.
    J.H. She, P. Mechnich, M. Schmucker, H. Schneider, Low temperature reaction sintering of mullite ceramics with an Y2O3 addition. Ceram. Int. 27, 847–852 (2001)CrossRefGoogle Scholar
  33. 33.
    J. Ihle, M. Hermann, J. Adler, Phase formation in porous liquid phase sintered silicon carbide : Part III: Interaction between Al2O3-Y2O3 and SiC. J. Euro. Ceram. Soc. 25(7), 1005–1013 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Marchi, J.C. Bressiani, A.H.D.A. Bressiani, Dilatometric studies of (SiO2-RE2O3-Al2O3) silicon carbide ceramics. Mater. Res. 8(2), 201–205 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Ray, P. Bhattacharya, R. Das, K. Sondhi, S. Ghosh, S. Sarkar, Preparation and characterization of macroporous pure alumina capillary membrane using boehmite as binder for filtration application. J. Porous Mater. 22, 1043–1052 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Bhattacharya, S. Sarkar, S. Ghosh, S. Majumdar, A. Mukhopadhyay, S. Bandyopadhyay, Potential of ceramic microfiltration and ultrafiltration membranes for the treatment of gray water for an effective reuse. Desalin. Water Treat. 51, 4323–4332 (2013)CrossRefGoogle Scholar
  37. 37.
    F. Monteverde, C. Mingazzini, M. Giorgi, A. Bellosi, Corrosion of silicon nitride in sulphuric acid aqueous solution. Corros. Sci. 43, 1851–1863 (2001)CrossRefGoogle Scholar
  38. 38.
    L. Zhang, M. Zhang, X. He, W. Tang, Chemical corrosion of liquid phase sintered SiC in acidic/alkaline solutions part1: corrosion in HNO3 solution. J. Mater. Eng. Perf. 25, 839–844 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Zhang, X. Mao, G. Chen, M. Zhang, X. He, W. Tang, Chemical corrosion of liquid-phase sintered SiC in NaOH aqueous solution. Corros. Eng. Sci. Technol. 51, 621–625 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia
  2. 2.National Institute of TechnologyDurgapurIndia

Personalised recommendations