Journal of Porous Materials

, Volume 25, Issue 4, pp 1099–1104 | Cite as

Synthesis and characterization of monodisperse hollow SnO2 microspheres and their enhanced sensing properties to ethanol

  • Ying Wei
  • Xiaodong Wang
  • Guiyun Yi
  • Lixing Zhou
  • Jianliang Cao
  • Guang Sun
  • Bala Hari


The monodisperse hollow SnO2 (H-SnO2) microspheres were successfully synthesized by the ion exchange method using sulfonated PS microspheres as a template. The structure and morphology were characterized by X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy, which confirms the hollow structure of the products. The H-SnO2 microspheres are composed of numerous SnO2 nanoparticles with a shell thickness of about 13 nm. The monodisperse H-SnO2 microspheres have a high specific surface area of 55.54 m2/g, which improves the gas sensing properties toward ethanol. Gas-sensing measurement results indicate that H-SnO2 microspheres exhibit an excellent sensitivity (103.1) toward 200 ppm ethanol at 260 °C, which is much higher than that (65.8) of SnO2 nanoparticles.


Monodisperse Hollow microspheres Sensors X-ray techniques Ethanol 



This work is supported by the National Natural Science Foundation of China (51404097, 61474038, U1404613) and Key Scientific Research Projects of Henan Higher Education (16A150009).


  1. 1.
    V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuators B 223, 750–760 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Cheng, S. Ma, X. Li, J. Luo, W. Li, F. Li, Y. Mao, T. Wang, Y. Li, Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens. Actuators B 200, 181–190 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, X. Wang, G. Sun, J. Cao, Z. Zhang, Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 363, 560–565 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Wang, Y. Tian, X. Li, X. Wang, H. He, Y. Xu, C. He, Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl. Surf. Sci. 261, 890–895 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Ge, H. Zheng, Y. Sun, Z. Jin, J. Shan, C. Wang, H. Wu, M. Li, F. Meng, Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. J. Alloys Compd. 659, 127–131 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Guo, T. Liu, Z. Gou, W. Zeng, Y. Chen, Hydrothermal synthesis of ultrathin ZnO nanosheets and their gas-sensing properties. J. Mater. Sci.: Mater. Electron. 24, 1764–1769 (2016)Google Scholar
  7. 7.
    C. Wang, X. Chu, M. Wu, Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B 120, 508–513 (2007)CrossRefGoogle Scholar
  8. 8.
    X. Jiang, S. Ma, W. Li, T. Wang, W. Jin, J. Luo, L. Cheng, Y. Mao, M. Zhang, Synthesis of hierarchical ZnO nanostructure assembled by nanorods and their performance for gas sensing. Mater. Lett. 142, 299–303 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Sun, L. Wang, D. Chu, Z. Ma, A. Wang, Y. Zheng, L. Wang, Facile template-free hydrothermal fabrication of ZnO hollow microspheres for gas sensing applications. Ceram. Int. 40, 16465–16473 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, X. Wang, G. Yi, Y. Xu, L. Zhou, Y. Wei, Synthesis of layered hierarchical porous SnO2 for enhancing gas sensing performance. J. Porous Mater. 23, 1–8 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Rao, L. Hu, A. Harleytrochimczyk, T.T. Pham, A. Zettl, C. Carraro, R. Maboudian, In situ localized growth of ordered metal oxide hollow sphere array on microheater platform for sensitive, ultra-fast gas sensing. ACS Appl. Mater. Interfaces 9, 2634–2641 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    J. Yang, S. Wang, R. Dong, L. Zhang, Z. Zhu, X. Gao, One-pot synthesis of SnO2 hollow microspheres and their formaldehyde sensor application. Mater. Lett. 184, 9–12 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Wang, G. Zhai, H. Wang, Synthesis and electrochemical investigation of tin dioxide-based elastic hollow microspheres for lithium storage. Ionics 21, 1–6 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Ma, H. Song, C. Guan, Interfacial oxidation-dehydration induced formation of porous SnO2 hollow nanospheres and their gas sensing properties. Sens. Actuators B 177, 196–204 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Z. Chen, Z. Wang, W. Zhang, N. Ming, Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett. 57, 4466–4470 (2003)CrossRefGoogle Scholar
  16. 16.
    C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik, Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21, 7937–7944 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Yang, Y. Chu, Y. Zhang, F. Yang, J. Liu, Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J. Solid State Chem. 179, 470–475 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Wang, S. Ma, L. Cheng, X. Jiang, M. Zhang, W. Li, W. Jin, Facile fabrication of multishelled SnO2 hollow microspheres for gas sensing application. Mater. Lett. 164, 56–59 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Lou, L.A. Archer, Z. Yang, Hollow micro/nanostructures: synthesis and applications. Adv. Mater. 20, 3987–4019 (2010)CrossRefGoogle Scholar
  20. 20.
    X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016)CrossRefPubMedGoogle Scholar
  21. 21.
    Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012)CrossRefPubMedGoogle Scholar
  22. 22.
    T. Wang, S. Ma, L. Cheng, J. Luo, X. Jiang, W. Jin, Preparation of Yb-doped SnO2 hollow nanofibers with an enhanced ethanol-gas sensing performance by electrospinning. Sens. Actuators B 216, 212–220 (2015)CrossRefGoogle Scholar
  23. 23.
    U.T. Nakate, R.N. Bulakhe, C.D. Lokhande, S.N. Kale, Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl. Surf. Sci. 371, 224–230 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Rai, W.K. Kwak, Y.T. Yu, Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties. Appl. Mate. Interfaces 5, 3026–3032 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Wang, X. Fu, F. Liu, S. Shi, J. Cheng, X. Zhang, Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures. J. Alloys Compd. 587, 82–89 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, Y. Zhang, S. Liu, T. Zhang, Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators B 222, 893–903 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Mirzaei, S. Park, G.J. Sun, G.H. Kheel, C. Lee, S. Lee, Fe2O3/Co3O4 composite nanoparticle ethanol sensor. J. Korean Phys. Soc. 69, 373–380 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2014)CrossRefGoogle Scholar
  29. 29.
    K.T.V. Krishna, O.M.D.L. Luz, M. Arturo, G.P. Heberto, CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: a study of Cu-induced modifications. Sensors 16, 1283 (2016)CrossRefGoogle Scholar
  30. 30.
    J.W. Yoon, S.H. Choi, J.S. Kim, H.W. Jang, Y.C. Kang, J.H. Lee, Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ying Wei
    • 1
  • Xiaodong Wang
    • 1
  • Guiyun Yi
    • 2
  • Lixing Zhou
    • 1
  • Jianliang Cao
    • 2
  • Guang Sun
    • 1
  • Bala Hari
    • 1
  1. 1.School of Materials Science and Engineering, Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in University of Henan ProvinceHenan Polytechnic UniversityJiaozuoChina
  2. 2.College of Chemistry and Chemical EngineeringHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations