Advertisement

Journal of Porous Materials

, Volume 25, Issue 4, pp 1035–1046 | Cite as

Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors

  • Xuan Hoan Vu
  • Michael Hunger
  • Udo Armbruster
  • Andreas Martin
Article

Abstract

Nano-ZSM-5/SBA-15 analog composites (ZSC) were prepared in a two-step process from ZSM-5 precursors with different Si/Al molar ratios (10–50) via high-temperature synthesis in mildly acidic media (200 °C, pH 3.5) aiming to evaluate the influence of the initial Si/Al ratio on their structural, acidic and catalytic properties. The resulting materials were characterized by SAXS, XRD, FTIR, TEM, N2 sorption, 27Al solid state-NMR, NH3-TPD, FTIR spectroscopy of adsorbed pyridine, AAS and ICP-AES. Under the applied synthesis conditions, a ZSC material with controlled distribution of nano-ZSM-5 and SBA-15 analog phases can be prepared from ZSM-5 precursors by adjusting the initial Si/Al ratio in the range of 20–30. Increasing the initial Si/Al ratio to 50, only ZSM-5 nanocrystals were obtained whereas reducing the initial Si/Al ratio to 10 led to the formation of a disordered mesoporous SBA-15 analog. The total acidity increases with the crystallinity of the ZSM-5 phase as varying the Si/Al ratio from 10 to 30 despite the decreased amount of incorporated aluminum. However, the acidity declines slightly when raising the Si/Al ratio to 50 because of the low incorporated aluminum. The catalytic performance of the ZSC materials compared to the reference materials, i.e. purely mesoporous Al-SBA-15 and purely microporous H-ZSM-5 was assessed in the gas phase cracking of cumene and 1,3,5-tri-isopropylbenzene (TIPB) as test reactions. The results show that a balanced ratio of nano-ZSM-5 and SBA-15 analog phases obtained by tuning the initial Si/Al ratio is crucial to achieve superior catalytic performance of the ZSC materials in the cracking of both cumene and TIPB.

Keywords

ZSM-5 SBA-15 Zeolite composites Acidity Cracking 

Notes

Acknowledgements

The authors would like to thank Dr. U. Bentrup for IR spectroscopy of adsorbed pyridine studies, Dr. M. Schneider for XRD measurements, Dr. M.-M. Pohl for recording TEM images, Mr. R. Eckelt for N2 physisorption measurements; Dr. N. Steinfeldt and Dr. D.L. Hoang are acknowledged for their help to carry out SAXS and NH3-TPD respectively. X.H. Vu thanks TDTU and LIKAT for the financial support.

References

  1. 1.
    J. Weitkamp, M. Hunger, in Introduction to Zeolite Molecular Sieves, ed. by J. Čejka, H. van Bekkum, A. Corma, F. Schueth (Elsevier, Amsterdam, 2007), p. 787Google Scholar
  2. 2.
    M. Stöcker, Gas phase catalysis by zeolites. Microporous Mesoporous Mater. 82, 257–292 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Čejka, S. Mintova, Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. Sci. Eng. 49, 457–509 (2007)CrossRefGoogle Scholar
  5. 5.
    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016)CrossRefGoogle Scholar
  6. 6.
    X.H. Vu, U. Armbruster, A. Martin, Micro/mesoporous zeolitic composites: recent developments in synthesis and catalytic applications. Catalysts 6, 183 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Xia, R. Mokaya, On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J. Mater. Chem. 14, 863–870 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Gao, A. Duan, X. Zhang, K. Chi, Z. Zhao, J. Li, Y. Qin, X. Wang, C. Xu, Self-assembly of monodispersed hierarchically porous Beta-SBA-15 with different morphologies and their hydro-upgrading performances of FCC gasoline. J. Mater. Chem. A 3, 16501–16512 (2015)CrossRefGoogle Scholar
  9. 9.
    Y.S. Ooi, R. Zakaria, A.R. Mohamed, S. Bhatia, Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Appl. Catal. A 274, 15–23 (2004)CrossRefGoogle Scholar
  10. 10.
    S.A. Bagshaw, N.I. Baxter, D.R.M. Brew, C.F. Hosie, N. Yuntong, S. Jaenicke, C.G. Khuan, Highly ordered mesoporous MSU-SBEA/zeolite Beta composite material. J. Mater. Chem. 16, 2235–2244 (2006)CrossRefGoogle Scholar
  11. 11.
    X.H. Vu, N. Steinfeldt, U. Armbruster, A. Martin, Improved hydrothermal stability and acidic properties of ordered mesoporous SBA-15 analogs assembled from nanosized ZSM-5 precursors. Microporous Mesoporous Mater. 164, 120–126 (2012)CrossRefGoogle Scholar
  12. 12.
    X.H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, A. Martin, Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J. Mater. Sci. 49, 5676–5689 (2014)CrossRefGoogle Scholar
  13. 13.
    C.H. Cheng, G. Juttu, S.F. Mitchell, D.F. Shantz, Synthesis, characterization and growth rates of aluminum- and Ge,Al-substituted silicalite-1 materials grown from clear solutions. J. Phys. Chem. B 110, 22488–22495 (2006)CrossRefGoogle Scholar
  14. 14.
    S.J. Kulkarni, S. Puvuuri, N. Nama, K.V. Raghawan, Process for the preparation of ZSM-5 catalyst. U.S. Patent 6800272 B2, 5 October (2004)Google Scholar
  15. 15.
    X.H. Vu, R. Eckelt, U. Armbruster, A. Martin, High-temperature synthesis of ordered mesoporous aluminosilicates from ZSM-5 nanoseeds with improved acidic properties. Nanomaterials 4, 712–725 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Coudurier, C. Naccache, J.C. Vedrine, Uses of i.r. spectroscopy in identifying ZSM zeolite structure. J. Chem. Soc. Chem. Commun. 0, 1413–1415 (1982)CrossRefGoogle Scholar
  17. 17.
    H. Wang, Y. Liu, T.J. Pinnavaia, Highly acidic mesostructured aluminosilicates assembled from surfactant-mediated zeolite hydrolysis products. J. Phys. Chem. B 110, 4524–4526 (2006)CrossRefGoogle Scholar
  18. 18.
    Q. Li, Z. Wu, B. Tu, S.S. Park, C.S. Ha, D. Zhao, Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio. Microporous Mesoporous Mater. 135, 95–104 (2010)CrossRefGoogle Scholar
  19. 19.
    C.J.H. Jacobsen, C. Madsen, T.V.W. Janssens, H.J. Jakobsen, J. Skibsted, Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous Mesoporous Mater. 39, 393–401 (2000)CrossRefGoogle Scholar
  20. 20.
    A. Ungureanu, B. Dragoi, V. Hulea, T. Cacciaguerra, D. Meloni, V. Solinas, E. Dumitriu, Effect of aluminium incorporation by the ‘‘pH-adjusting’’ method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous Mesoporous Mater. 163, 51–64 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Moterra, G. Magnacca, V. Bolis, On the critical use of molar absorption coefficients for adsorbed species: the methanol/silica system. Catal. Today 70, 43–58 (2001)CrossRefGoogle Scholar
  22. 22.
    Z. Luan, J.A. Fournier, In situ spectroscopic investigation of active sites and adsorbate interactions in mesoporous aluminosilicate SBA-15 molecular sieves. Microporous Mesoporous Mater. 79, 235–240 (2005)CrossRefGoogle Scholar
  23. 23.
    P. Waller, Z. Shan, L. Marchese, G. Tartaglione, W. Zhou, J.C. Jansen, T. Maschmeyer, Zeolite nanocrystals inside mesoporous TUD-1: a high-performance catalytic composite. Chem. Eur. J. 10, 4970–4976 (2004)CrossRefGoogle Scholar
  24. 24.
    Y. Li, W. Zhang, X. Wang, Y. Zhang, T. Dou, K. Xie, Synthesis, characterization, and catalytic properties of a hydrothermally stable Beta/MCM-41 composite from well-crystallized zeolite Beta. J. Porous Mater. 15, 133–138 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Corma, B.W. Wojciechowski, The catalytic cracking of cumene. Catal. Rev. Sci. Eng. 24, 1–65 (1982)CrossRefGoogle Scholar
  26. 26.
    P. Morales-Pacheco, J.M. Domínguez, L. Bucio, F. Alvarez, U. Sedran, M. Falco, Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal. Today 166, 25–38 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Goto, Y. Fukushima, P. Ratu, Y. Imada, Y. Kubota, Y. Sugi, M. Ogura, M. Matsukata, Mesoporous material from zeolite. J. Porous Mater. 9, 43–48 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xuan Hoan Vu
    • 1
    • 2
  • Michael Hunger
    • 3
  • Udo Armbruster
    • 4
  • Andreas Martin
    • 4
  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Institute of Chemical TechnologyUniversity of StuttgartStuttgartGermany
  4. 4.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations