Advertisement

Journal of Porous Materials

, Volume 25, Issue 4, pp 965–987 | Cite as

Contemporary mesoporous materials for drug delivery applications: a review

Article
  • 201 Downloads

Abstract

The current avalanche in the literature reports on the synthesis and application of novel mesoporous materials is a matter of interest for the chemist community all over the world. Different classes of ordered mesoporous matrices are designed with fine internal architectures which are suitable for loading and release of several molecular assemblies of practical interest. The present scenario in this regard has prompted us to undertake a review on the advancement of such materials in the field of drug delivery applications. In the present review, we have considered the different possible mesoporous materials suitable for delivery of widely used drugs. We have presented here a general outline of such mesoporous materials and discussed the mechanistic features of their cargo behaviour for different classes of drugs viz., anticancer, antirheumatic, antihypertensive and so on. Finally, the discussion has been concluded with the current scenario of their practical utility and the future prospects of this vastly growing research field. The present review is made to create an impression on the development of the mesoporous materials for their possible applications towards delivery of some important drugs.

Keywords

Mesoporous materials Pore size Drug delivery Sustained release Biomolecules 

Notes

Acknowledgements

Pritam Singh gratefully acknowledges the University Grants Commission (UGC) (Ref. No. 20/12/2015(ii)EU-V dated 24.08.2016) for providing necessary fellowship.

References

  1. 1.
    “Porous silica particles containing a crystallized phase and method” Application No. US 3493341D A filed on 23-Jan-1967; Publication No. US 3493341 A published on 03-Feb-1970Google Scholar
  2. 2.
    “Process for producing silica in the form of hollow spheres” Application No. US 342525 A filed on 04-Feb-1964; Publication No. US 3383172 A published on 14-May-1968Google Scholar
  3. 3.
    F. Direnzo, H. Cambon, R. Dutarte, Microporous Mater. 10, 283–286 (1997)Google Scholar
  4. 4.
    M. Saadaoui, I. Fernández, A. Sánchez, P. Díez, S. Campuzano, N. Raouafi, J. Pingarrón, R. Villalonga, Electrochem. Commun. 58, 57–61 (2015)Google Scholar
  5. 5.
    B. Chang, D. Chen, Y. Wang, Y. Chen, Y. Jiao, X. Sha, W. Yang, Chem. Mater. 25, 574–585 (2013)Google Scholar
  6. 6.
    R. Vathyam, E. Wondimu, S. Das, C. Zhang, S. Hayes, Z. Tao, T. Asefa, J. Phys. Chem. C 115, 13135–13150 (2011)Google Scholar
  7. 7.
    M. Vialpando, A. Aerts, J. Persoons, J. Martens, G.V.D. Mooter, J. Pharm. Sci. 100, 3411–3420 (2011)Google Scholar
  8. 8.
    J. Croissant, D. Salles, M. Maynadier, O. Mongin, V. Hugues, M. Blanchard-Desce, X. Cattoën, M.W.C. Man, A. Gallud, M. Garcia, M. Gary-Bobo, L. Raehm, J. Durand, Chem. Mater. 26, 7214–7220 (2014)Google Scholar
  9. 9.
    Y. Chen, H. Chen, M. Ma, F. Chen, L. Guo, L. Zhang, J. Shi, J. Mater. Chem. 21, 5290–5298 (2011)Google Scholar
  10. 10.
    H. Zheng, S. Che, RSC Adv. 2, 4421–4429 (2012)Google Scholar
  11. 11.
    Z. Zhao, C. Wu, Y. Zhao, Y. Hao, Y. Liu, W. Zhao, Int. J. Nanomed. 10, 1691–1701 (2015)Google Scholar
  12. 12.
    A. Sinha, A. Chakraborty, N. Jana, ACS Appl. Mater. Interfaces 6, 22183–22191 (2014)Google Scholar
  13. 13.
    R.N. Jain, X. Huang, S. Das, R. Silva, V. Ivanova, T. Minko, T. Asefa, Z. Anorg, Allg. Chem. 640(3–4), 616–623 (2014)Google Scholar
  14. 14.
    M.V. Speybroeck, R. Mellaerts, T.D. Thi, J.A. Martens, J.V. Humbeeck, P. Annaert, G.V.D. Mooter, P. Augustijns, J. Pharma. Sci. 100, 4864–4876 (2011)Google Scholar
  15. 15.
    L. Sun, Y. Wang, T. Jiang, X. Zheng, J. Zhang, J. Sun, C. Sun, S. Wang, ACS Appl. Mater. Interfaces 5, 103–113 (2013)Google Scholar
  16. 16.
    H. Li, T.-Y. Ma, D.-M. Kong, Z.-Y. Yuan, Analyst 138, 1084–1090 (2013)Google Scholar
  17. 17.
    D. Halamová, M. Badaničová, V. Zeleňák, T. Gondová, U. Vainio, Appl. Surf. Sci. 256, 6489–6494 (2010)Google Scholar
  18. 18.
    Y. Hu, J. Wang, Z. Zhi, T. Jiang, S. Wang, J. Colloid Interface Sci. 363, 410–417 (2011)Google Scholar
  19. 19.
    N. Vilaça, F. Morais-Santos, A.F. Machado, A. Sirkecioğlu, M.F.R. Pereira, M. Sardo, J. Rocha, P. Parpot, A.M. Fonseca, F. Baltazar, J. Phys. Chem. C 119, 3589–3595 (2015)Google Scholar
  20. 20.
    S. Jangra, S. Devi, V.K. Tomer, V. Chhokar, S. Duhan, J. Asian Ceram. Soc. 4, 1–7 (2016)Google Scholar
  21. 21.
    M.-H. Xiong, Y. Bao, X.-Z. Yang, Y.-C. Wang, B. Sun, J. Wang, J. Am. Chem. Soc. 134, 4355–4362 (2012)Google Scholar
  22. 22.
    J. Karlsson, S. Atefyekta, M. Andersson, Int. J. Nanomed. 10, 4425–4436 (2015)Google Scholar
  23. 23.
    M. Filippousi, P.I. Siafaka, E.P. Amanatiadou, S.G. Nanaki, M. Nerantzaki, D.N. Bikiaris, I.S. Vizirianakis, G.V. Tendeloo, J. Mater. Chem. B 3, 5991–6000 (2015)Google Scholar
  24. 24.
    X. Wang, D. Chen, L. Cao, Y. Li, B.J. Boyd, R.A. Caruso, ACS Appl. Mater. Interfaces 5, 10926–10932 (2013)Google Scholar
  25. 25.
    C.-C. Wu, Y. Hu, M. Miller, R.V. Aroian, M.J. Sailor, ACS Nano 9, 6158–6167 (2015)Google Scholar
  26. 26.
    D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, J. Lin, Chem. Soc. Rev. 44, 1416–1448 (2015)Google Scholar
  27. 27.
    Y. Shi, M.L. Miller, A.J.D. Pasqua, Comments Inorg. Chem. 36, 61–80 (2016)Google Scholar
  28. 28.
    J. Siefker, P. Karande, M.-O. Coppens, Expert Opin. Drug Deliv. 11, 1781–1793 (2014)Google Scholar
  29. 29.
    A.M. Ibarra-Ruiz, D.C.R. Burbano, J.A. Capobianco, Adv. Phys. X 1, 194–225 (2016)Google Scholar
  30. 30.
    K.K. Qian, R.H. Bogner, J. Pharm. Sci. 101, 444–463 (2012)Google Scholar
  31. 31.
    M. Vallet-Regí, J. Intern. Med. 267, 22–43 (2009)Google Scholar
  32. 32.
    R.E. Yanes, F. Tamanoi, Ther. Deliv. 3, 389–404 (2012)Google Scholar
  33. 33.
    M.-A. Shahbazi, B. Herranz, H.A. Santos, Biomatter 2, 1–17 (2012)Google Scholar
  34. 34.
    S. Kwon, R.K. Singh, R.A. Perez, E.A.A. Neel, H.-W. Kim, W. Chrzanowski, J. Tissue Eng. 4, 1–18 (2013)Google Scholar
  35. 35.
    N.T.K. Thanh, L.A.W. Green, Nano Today 5, 213–230 (2010)Google Scholar
  36. 36.
    R.K. Singh, K.D. Patel, K.W. Leong, H.-W. Kim, ACS Appl. Mater. Interfaces 9, 10309–10337 (2017)Google Scholar
  37. 37.
    J.F. Quinn, M.R. Whittaker, T.P. Davis, Polym. Chem. 8, 97–126 (2017)Google Scholar
  38. 38.
    X. Zhang, L. Han, M. Liu, K. Wang, L. Tao, Q. Wan, Y. Wei, Mater. Chem. Front. 1, 807–822 (2017)Google Scholar
  39. 39.
    A. Llopis-Lorente, B. Lozano-Torres, A. Bernardos, R. Martínez-Máñez, F. Sancenón, J. Mater. Chem. B 5, 3069–3083 (2017)Google Scholar
  40. 40.
    J. Zhu, Y. Niu, Y. Li, Y. Gong, H. Shi, Q. Huo, Y. Liu, Q. Xu, J. Mater. Chem. B 5, 1339–1352 (2017)Google Scholar
  41. 41.
    L. Dai, J. Liu, Z. Luo, M. Li, K. Cai, J. Mater. Chem. B 4, 6758–6772 (2016)Google Scholar
  42. 42.
    Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, Nanomed. Nanotechnol. Biol. Med. 11, 313–327 (2015)Google Scholar
  43. 43.
    F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504–1534 (2012)Google Scholar
  44. 44.
    Y. Jeong, S.-S. Park, A. Sung, C.-S. Ha, Mol. Cryst. Liq. Cryst. 600, 70–80 (2014)Google Scholar
  45. 45.
    Z. Chen, X. Li, H. He, Z. Ren, Y. Liu, J. Wang, Z. Li, G. Shen, G. Han, Colloids Surf. B 95, 274–278 (2012)Google Scholar
  46. 46.
    A.M. El-Toni, A. Khan, M.A. Ibrahim, J.P. Labis, G. Badr, M. Al-Hoshan, S. Yin, T. Sato, J. Colloid Interface Sci. 378, 83–92 (2012)Google Scholar
  47. 47.
    L. Rashidi, E. Vasheghani-Farahani, K. Rostami, F. Gangi, M. Fallahpour, Iran. J. Biotechnol. 11, 209–213 (2013)Google Scholar
  48. 48.
    Y. Li, N. Li, W. Pan, Z. Yu, L. Y, B. Tang, ACS Appl. Mater. Interfaces 9, 2123–2129 (2017)Google Scholar
  49. 49.
    Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng, J. Shi, ACS Nano 4, 6001–6013 (2010)Google Scholar
  50. 50.
    X. Wu, Z. Han, R.M. Schur, Z.-R. Lu, ACS Biomater. Sci. Eng. 2, 501–507 (2016)Google Scholar
  51. 51.
    Y.-J. Cheng, G.-F. Luo, J.-Y. Zhu, X.-D. Xu, X. Zeng, D.-B. Cheng, Y.-M. Li, Y. Wu, X.-Z. Zheng, R.-X. Zhuo, F. He, ACS Appl. Mater. Interfaces 7, 9078–9087 (2015)Google Scholar
  52. 52.
    X. Zhang, X. Zhang, S. Wang, M. Liu, Y. Zhang, L. Tao, Y. Wei, ACS Appl. Mater. Interfaces 5, 1943–1947 (2013)Google Scholar
  53. 53.
    L. Sun, T. Liu, H. Li, L. Yang, L. Meng, Q. Lu, J. Long, ACS Appl. Mater. Interfaces 7, 4990–4997 (2015)Google Scholar
  54. 54.
    C. Giménez, C. de laTorre, M. Gorbe, E. Aznar, F. Sancenón, J.R. Murguía, R. Martínez-Máñaz, M.D. Marcos, P. Amorós, Langmuir 31, 3753–3762 (2015)Google Scholar
  55. 55.
    F.-F. Zheng, P.-H. Zhang, Y. Xi, J.-J. Chen, L.-L. Li, J.-J. Zhu, Anal. Chem. 87, 11739–11745 (2015)Google Scholar
  56. 56.
    S.K. Maji, S. Sreejith, A.K. Mandal, X. Ma, Y. Zhao, ACS Appl. Mater. Interfaces 6, 13648–13656 (2014)Google Scholar
  57. 57.
    J. Zhang, D. Wu, M.-F. Li, J. Feng, ACS Appl. Mater. Interfaces 7, 26666–26673 (2015)Google Scholar
  58. 58.
    Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 135, 4799–4804 (2013)Google Scholar
  59. 59.
    H. Qiu, B. Cui, G. Li, J. Yang, H. Peng, Y. Wang, N. Li, R. Gao, Z. Chang, Y. Wang, J. Phys. Chem. C 118, 14929–14937 (2014)Google Scholar
  60. 60.
    S. Wu, X. Huang, X. Du, J. Mater. Chem. B 3, 1426–1432 (2015)Google Scholar
  61. 61.
    Y. Zhang, C.Y. Ang, M. Li, S.Y. Tan, Q. Qu, Z. Luo, Y. Zhao, ACS Appl. Mater. Interfaces 7, 18179–18187 (2015)Google Scholar
  62. 62.
    L. Yuan, Q. Tang, D. Yang, J.Z. Zhang, F. Zhang, J. Hu, J. Phys. Chem. C 115, 9926–9932 (2011)Google Scholar
  63. 63.
    L. Dai, J. Li, B. Zhang, J. Liu, Z. Luo, K. Cai, Langmuir 30, 7867–7877 (2014)Google Scholar
  64. 64.
    B.-Q. Lu, Y.-J. Zhu, H.-Y. Ao, C. Qi, F. Chen, ACS Appl. Mater. Interfaces 4, 6969–6974 (2012)Google Scholar
  65. 65.
    S. Shen, T. Gu, D. Mao, X. Xiao, P. Yuan, M. Yu, L. Xia, Q. Ji, L. Meng, W. Song, C. Yu, G. Lu, Chem. Mater. 24, 230–235 (2012)Google Scholar
  66. 66.
    Q. Gao, Y. Xu, D. Wu, W. Shen, F. Deng, Langmuir 26, 17133–17138 (2010)Google Scholar
  67. 67.
    K. Yang, H. Luo, M. Zeng, Y. Jiang, J. Li, X. Fu, ACS Appl. Mater. Interfaces 7, 17399–17407 (2015)Google Scholar
  68. 68.
    M. Bathfield, J. Reboul, T. Cacciaguerra, P. Desmazes, C. Gérardin, Chem. Mater. 28, 3374–3384 (2016)Google Scholar
  69. 69.
    C. Liu, J. Zheng, L. Deng, C. Ma, J. Li, Y. Li, S. Yang, J. Yang, J. Wang, R. Yang, ACS Appl. Mater. Interfaces 7, 11930–11938 (2015)Google Scholar
  70. 70.
    S.-F. Lee, X.-M. Zhu, Y-X.J. Wang, S.-H. Xuan, Q. You, W.-H. Chan, C.-H. Wong, F. Wang, J.C. Yu, C.H.K. Cheng, C. Leung, ACS Appl. Mater. Interfaces 5, 1566–1574 (2013)Google Scholar
  71. 71.
    J. Lai, B.P. Shah, E. Garfunkel, K.-B. Lee, ACS Nano 7, 2741–2750 (2013)Google Scholar
  72. 72.
    A. Popat, J. Liu, G.Q.M. Lu, S.Z. Qiao. J. Mater. Chem. 22, 11173–11178 (2012)Google Scholar
  73. 73.
    H. Zhang, H. Xu, M. Wu, Y. Zhong, D. Wang, Z. Jiao, J. Mater. Chem. B 3, 6480–6489 (2015)Google Scholar
  74. 74.
    M.S. Moorthy, S.-S. Park, D. Fuping, S.-H. Hong, M. Selvaraj, C.-S. Ha, J. Mater. Chem. 22, 9100–9108 (2012)Google Scholar
  75. 75.
    J. Fu, Y. Zhu, Y. Zhao, J. Mater. Chem. B 2, 3538–3548 (2014)Google Scholar
  76. 76.
    Y. Tang, Z. Teng, Y. Liu, Y. Tian, J. Sun, S. Wang, C. Wang, J. Wang, G. Lu, J. Mater. Chem. B 2, 4356–4362 (2014)Google Scholar
  77. 77.
    Y. Zhang, T. Shen, X. Deng, Y. Ma, L. Wang, Y. Peng, J. Wu, Z. Zhang, W. Liu, Y. Tang, J. Mater. Chem. B 3, 8449–8458 (2015)Google Scholar
  78. 78.
    X. Yao, X. Chen, C. He, L. Chen, X. Chen, J. Mater. Chem. B 3, 4707–4714 (2015)Google Scholar
  79. 79.
    L. Dai, Q. Zhang, H. Gu, K. Cai, J. Mater. Chem. B 3, 8303–8313 (2015)Google Scholar
  80. 80.
    H.-M. Lin, H.-Y. Lin, M.-H. Chan, J. Mater. Chem. B 1, 6147–6156 (2013)Google Scholar
  81. 81.
    J. Liu, C. Detrembleur, M.-C. De Pauw-Gillet, S. Mornet, L.V. Elst, S. Laurent, C. Jérôme, E. Duguet, J. Mater. Chem. B 2, 59–70 (2014)Google Scholar
  82. 82.
    C. Tao, Y. Zhu, Dalton Trans. 43, 15482–15490 (2014)Google Scholar
  83. 83.
    J. Shi, H. Fu, X. Sun, J. Shen, H. Zhang, J. Mater. Chem. B 3, 635–641 (2015)Google Scholar
  84. 84.
    M. Zhu, L. Zhang, Q. He, J. Zhao, G. Limin, J. Shi, J. Mater. Chem. 21, 1064–1072 (2011)Google Scholar
  85. 85.
    M.S. Moorthy, J.-H. Park, J.-H. Bae, S.-H. Kim, C.-S. Ha, J. Mater. Chem. B 2, 6487–6499 (2014)Google Scholar
  86. 86.
    X. Mei, D. Chen, N. Li, Q. Xu, J. Ge, H. Li, B. Yang, Y. Xu, J. Lu, Soft Matter 8, 5309–5316 (2012)Google Scholar
  87. 87.
    B. Ahn, J. Park, K. Singha, H. Park, W.J. Kim, J. Mater. Chem. B 1, 2829–2836 (2013)Google Scholar
  88. 88.
    D. He, X. Li, X. He, K. Wang, J. Tang, X. Yang, X. He, X. Yang, Z. Zou, J. Mater. Chem. B 3, 5588–5594 (2015)Google Scholar
  89. 89.
    T. Wang, F. Chai, Q. Fu, L. Zhang, H. Liu, L. Li, Y. Liao, Z. Su, C. Wang, B. Duan, D. Ren, J. Mater. Chem. 21, 5299–5306 (2011)Google Scholar
  90. 90.
    S. Yang, N. Li, D. Chen, X. Qi, Y. Xu, Y. Xu, Q. Xu, H. Li, J. Lu, J. Mater. Chem. B 1, 4628–4636 (2013)Google Scholar
  91. 91.
    A. Pourjavadi, Z.M. Tehrani, C. Bennett, Int. J. Polym. Mater. Polym. Biomater. 64, 570–577 (2014)Google Scholar
  92. 92.
    M. Moorthy, M.-J. Kim, J.-H. Bae, S.S. Park, N. Saravanan, S.-H. Kim, C.-S. Ha, Eur. J. Inorg. Chem. 17, 3028–3038 (2013)Google Scholar
  93. 93.
    J. Ceballos-Torres, P. Virag, M. Cenariu, S. Prashar, M. Fajardo, E. Fischer-Fodor, S. Gómez-Ruiz, Chem. Eur. J. 20, 10811–10828 (2014)Google Scholar
  94. 94.
    X. Chen, A.H. Soeriyadi, X. Lu, S.M. Sagnella, M. Kavallaris, J.J. Gooding, Adv. Funct. Mater. 24, 6999–7006 (2014)Google Scholar
  95. 95.
    S. Tang, X. Huang, X. Chen, N. Zheng, Adv. Funct. Mater. 20, 2442–2447 (2010)Google Scholar
  96. 96.
    L. Palanikumar, E.S. Choi, J.Y. Cheon, S.H. Joo, J.-H. Ryu, Adv. Funct. Mater. 25, 957–965 (2015)Google Scholar
  97. 97.
    Q. Liu, J. Zhang, W. Sun, Q.R. Xie, W. Xia, H. Gu, Int. J. Nanomed. 7, 999–1013 (2012)Google Scholar
  98. 98.
    J. Lu, Z. Li, J.I. Zink, F. Tamanoi, Nanomedicine 8, 212–220 (2012)Google Scholar
  99. 99.
    R. Xing, H. Lin, P. Jiang, F. Qu, Colloids Surf. A 403, 7–14 (2012)Google Scholar
  100. 100.
    F.M. Martín-Saavedra, E. Ruíz-Hernández, A. Boré, D. Arcos, M. Vallet-Regí, N. Vilaboa, Acta Biomater. 6, 4522–4531 (2010)Google Scholar
  101. 101.
    Y.-J. Yang, X. Tao, Q. Hou, Y. Ma, X.-L. Chen, J.-F. Chen, Acta Biomater. 6, 3092–3100 (2010)Google Scholar
  102. 102.
    J. Zhang, Y. Sun, B. Tian, K. Li, L. Wang, Y. Liang, J. Han, Colloids Surf. B 144, 293–302 (2016)Google Scholar
  103. 103.
    Y. Wang, X. Ding, Y. Chen, M. Guo, Y. Zhang, X. Guo, Biomaterials 101, 207–216 (2016)Google Scholar
  104. 104.
    H. Chen, D. Zheng, J. Liu, Y. Kuang, Q. Li, M. Zhang, H. Ye, H. Quin, Y. Xu, C. Li, B. Jiang, Int. J. Biol. Macromol. 85, 596–603 (2016)Google Scholar
  105. 105.
    L. Qiu, Y. Zhao, N. Cao, L. Cao, L. Sun, X. Zou, Sens. Actuators B 234, 21–26 (2016)Google Scholar
  106. 106.
    Z. Li, L. Zhu, Q. Liu, Y. Du, F. Wang, Nanoscale Res. Lett. 435, 1–10 (2013)Google Scholar
  107. 107.
    T.-T. Wang, F. Chai, C.-G. Wang, L. Li, H.-Y. Liu, L.-Y. Zhang, Z.-M. Su, Y. Liao, J. Colloid Interface Sci. 358, 109–115 (2011)Google Scholar
  108. 108.
    J. Lee, C. Jeong, W.J. Kim, J. Mater. Chem. B 2, 8338–8345 (2014)Google Scholar
  109. 109.
    G. Villaverde, A. Baeze, G.J. Melen, A. Alfranca, M. Ramirez, M. Vallet-Regí, J. Mater. Chem. B 3, 4831–4842 (2015)Google Scholar
  110. 110.
    Q.-L. Li, S.-H. Xu, H. Zhou, X. Wang, B. Dong, H. Gao, J. Tang, Y.-W. Yang, ACS Appl. Mater. Interfaces 7, 28656–28664 (2015)Google Scholar
  111. 111.
    D. Shao, J. Li, X. Zheng, Y. Pan, Z. Wang, M. Zhang, Q.-X. Chen, W.-F. Dong, L. Chen, Biomaterials 100, 118–133 (2016)Google Scholar
  112. 112.
    I. Chakraborty, S.J. Carrington, J. Hauser, S.R.J. Oliver, P.K. Mascharak, Chem. Mater. 27, 8387–8397 (2015)Google Scholar
  113. 113.
    C. de la Torre, L. Mondragón, C. Coll, F. Sancenón, M.D. Macros, R. Martínez-Máñez, P. Amorós, E. Pérez-Payá, M. Orzáez, Chem. Eur. J. 20, 15309–15314 (2014)Google Scholar
  114. 114.
    L. Mondragón, N. Mas, V. Ferragud, C. de la Torre, A. Agostini, R. Martínez-Máñez, F. Sancenón, P. Amorós, E. Pérez-Payá, M. Orzáez, Chem. Eur. J. 20, 5271–5281 (2014)Google Scholar
  115. 115.
    P. Díez, A. Sánchez, M. Gamella, P. Martínez-Ruíz, E. Aznar, C. de la Torre, J.R. Murguía, R. Martínez-Máñez, R. Villalonga, J.M. Pingarrón, J. Am. Chem. Soc. 136, 9116–9123 (2014)Google Scholar
  116. 116.
    A. Agostini, L. Mondragón, L. Pascual, E. Aznar, C. Coll, R. Martínez-Máñez, F. Sancenón, J. Soto, M.D. Marcos, P. Amorós, A.M. Costero, M. Parra, S. Gil, Langmuir 28, 14766–14776 (2012)Google Scholar
  117. 117.
    B. Kumar, S. Kulanthaivel, A. Mondal, S. Mistra, B. Banerjee, A. Bhaumik, I. Banerjee, S. Giri, Colloids Surf. B 150, 352–361 (2017)Google Scholar
  118. 118.
    A. Tukappa, A. Ultimo, C. de la Torre, T. Pardo, F. Sancenón, R. Martínez-Máñez, Langmuir 32, 8507–8515 (2016)Google Scholar
  119. 119.
    C.T.H. Nguyen, R.I. Webb, L.K. Lambert, E. Strounina, E.C. Lee, M.O. Parat, M.A. McGuckin, A. Popat, P.J. Cabot, B.P. Ross, ACS Appl. Mater. Interfaces 9, 9470–9483 (2017)Google Scholar
  120. 120.
    Y.-J. Cheng, A.-Q. Zhang, J.-J. Hu, F. He, X. Zeng, X.-Z. Zhang, ACS Appl. Mater. Interfaces 9, 2093–2103 (2017)Google Scholar
  121. 121.
    Y. Wang, J. Wang, Y. Yang, Y. Sun, Y. Yuan, Y. Li, C. Liu, Colloids Surf. B 153, 272–279 (2017)Google Scholar
  122. 122.
    M. Zhang, J. Liu, Y. Kuang, Q. Li, D.-W. Zheng, Q. song, H. Chen, X. Chen, Y. Xu, C. Li, B. Jiang, Int. J. Biol. Macromol. 98, 691–700 (2017)Google Scholar
  123. 123.
    J.-T. Dai, Y. Zhang, H.-C. Li, Y.-H. Deng, A.A. Elzatahry, A. Alghamdi, D.-L. Fu, Y.-J. Jiang, D.-Y. Zhao, Chin. Chem. Lett. 28, 531–536 (2017)Google Scholar
  124. 124.
    Q. Zhang, H. Zhao, D. Li, L. Liu, S. Du, Colloids Surf. B 149, 138–145 (2017)Google Scholar
  125. 125.
    X. Chen, H. Sun, J. Hu, X. Han, H. Liu, Y. Hu, Colloids Surf. B 152, 77–84 (2017)Google Scholar
  126. 126.
    D. Li, W. Nie, L. Chen, Y. Miao, X. Zhang, F. Chen, B. Yu, R. Ao. B. Yu, C. He, RSC Adv. 7, 7973–7982 (2017)Google Scholar
  127. 127.
    S. Huang, P. Ma, Z. Cheng, B. Liu, X. Deng, Z. Xie, J. Lin, Y. Han, RSC Adv. 7, 10287–10294 (2017)Google Scholar
  128. 128.
    Y. Zhang, J. Tan, M. Long, H. Yang, S. Yuan, A. Tang, Y. Hu, J. Mater. Chem. B 4, 7406–7414 (2016)Google Scholar
  129. 129.
    G. Lv, L. Qiu, G. Liu, W. Wang, K. Li, X. Zhao, J. Lin, Dalton Trans. 45, 18147–18155 (2016)Google Scholar
  130. 130.
    E. Beňová, V. Zeleňák, D. Halamová, M. Almáši, V. Petruľová, M. Psotka, A. Zeleňáková, M. Bačkor, V. Hornebecq, J. Mater. Chem. B 5, 817–825 (2017)Google Scholar
  131. 131.
    X. Chen, Z. Liu, Macromol. Rapid Commun. 37, 1533–1539 (2016)Google Scholar
  132. 132.
    P. Kalluru, R. Vankayala, C.-S. Chiang, K.C. Hwang, Adv. Funct. Mater. 26, 7908–7920 (2016)Google Scholar
  133. 133.
    Y. Zheng, C.D. Fahrenholtz, C.L. Hackett, S. Ding, C.S. Day, R. Dhall, G.S. Marrs, M.D. Gross, R. Singh, U. Bierbach, Chem. Eur. J. 23, 3386–3397 (2017)Google Scholar
  134. 134.
    M. Oroval, P. Díez, E. Aznar, C. Coll, M.D. Marcos, F. Sancenón, R. Villalonga, R. Martínez-Máñez, Chem. Eur. J. 23, 1353–1360 (2017)Google Scholar
  135. 135.
    G. Wang, J. Dong, T. Yuan, J. Zhang, L. Wang, H. Wang, Macromol. Biosci. 16, 990–994 (2016)Google Scholar
  136. 136.
    D. Saha, E.A. Payzant, A.S. Kumbhar, A. Naskar, ACS Appl. Mater. Interfaces 5, 5868–5874 (2013)Google Scholar
  137. 137.
    W.-K. Oh, H. Yoon, J. Jang, Biomaterials 31, 1342–1348 (2010)Google Scholar
  138. 138.
    Y.A. Nor, H. Zhang, S. Purwajanti, H. Song, A.K. Meka, Y. Wang, N. Mitter, D. Mahony, C. Yu, J. Mater. Chem. B 4, 7014–7021 (2016)Google Scholar
  139. 139.
    Z. Li, Z. Liu, M. Yin, X. Yang, Q. Yuan, J. Ren, X. Qu, Biomacromolecules 13, 4257–4263 (2012)Google Scholar
  140. 140.
    K. Lin, L. Chen, P. Liu, Z. Zou, M. Zhang, Y. Shen, Y. Qiao, X. Liu, J. Chang, CrystEngComm 15, 2999–3008 (2013)Google Scholar
  141. 141.
    D. Li, J. He, W. Cheng, Y. Wu, Z. Hu, H. Tian, Y. Huang, J. Mater. Chem. B 2, 6089–6096 (2014)Google Scholar
  142. 142.
    M. Selvakumar, P.S. Kumar, B. Das, S. Dhara, S. Chattopadhyay, Cryst. Growth Des. 17, 433–445 (2017)Google Scholar
  143. 143.
    E. Kolanthai, P.A. Sindu, K.T. Arul, V.S. Chandra, E. Manikandan, S.N. Kalkura, J. Photochem. Photobiol. B 166, 220–231 (2017)Google Scholar
  144. 144.
    Y.-Y. Chen, H.-C. Wu, J.-S. Sun, G.-C. Dong, T.-W. Wang, Langmuir 29, 3721–3729 (2013)Google Scholar
  145. 145.
    H. Peng, K. Li, T. Wang, J. Wang, J. Wang, R. Zhu, D. Sun, S. Wang, Nanoscale Res. Lett. 321, 1–11 (2013)Google Scholar
  146. 146.
    H. Wang, J. Shen, Y. Li, Z. Wei, G. Cao, Z. Gai, K. Hong, P. Banerjee, S. Zhou, Biomater. Sci. 2, 915–923 (2014)Google Scholar
  147. 147.
    F. Ke, Y.-P. Yuan, L.-G. Qiu, Y.-H. Shen, A.-J. Xie, J.-F. Zhu, X.-Y. Tian, L.-D. Zhang, J. Mater. Chem. 21, 3843–3848 (2011)Google Scholar
  148. 148.
    Y.-L. Su, J.-H. Fang, C.-Y. Liao, C.-T. Lin, Y.-T. Li, S.-H. Hu, Theranostics 5, 1233–1248 (2015)Google Scholar
  149. 149.
    F. Benyettou, L.A.O. Flores, F. Ravaux, R. Rezgui, M. Jouiad, S.I. Nehme, R.K. Parsapur, J.-C. Olsen, P. Selvam, A. Trabolsi, Chem. Eur. J. 22, 17020–17028 (2016)Google Scholar
  150. 150.
    S. Kumar, A. Daverey, N.K. Sahu, D. Bahadur, J. Mater. Chem. B 1, 3652–3660 (2013)Google Scholar
  151. 151.
    J. Shi, Z. Chen, B. Wang, L. Wang, T. Lu, Z. Zhang, ACS Appl. Mater. Interfaces 7, 28554–28565 (2015)Google Scholar
  152. 152.
    P. Huang, J. Wang, S. Lai, F. Liu, N. Ni, Q. Cao, W. Liu, D.Y.B. Deng, W. Zhou, J. Mater. Chem. B 2, 8616–8625 (2014)Google Scholar
  153. 153.
    V.B. Kumar, K. Kumar, A. Gedanken, P. Paik, J. Mater. Chem. B 2, 3956–3964 (2014)Google Scholar
  154. 154.
    X. Kang, D. Yang, P. Ma, Y. Dai, M. Shang, D. Geng, Z. Cheng, J. Lin, Langmuir 29, 1286–1294 (2013)Google Scholar
  155. 155.
    F. Chen, P. Huang, C. Qi, B.-Q. Lu, X.-Y. Zhao, C. Li, J. Wu, D.-X. Cui, Y. Zhu, J. Mater. Chem. B 2, 7132–7140 (2014)Google Scholar
  156. 156.
    G. Yang, S. Gai, F. Qu, P. Yang, ACS Appl. Mater. Interfaces 5, 5788–5796 (2013)Google Scholar
  157. 157.
    X. Kang, Z. Cheng, C. Li, D. Yang, M. Shang, P. Ma, G. Li, N. Liu, J. Lin, J. Phys. Chem. C 115, 15801–15811 (2011)Google Scholar
  158. 158.
    R. Lv, P. Yang, Y. Dai, S. Gai, F. He, J. Lin, ACS Appl. Mater. Interfaces 6, 15550–15563 (2014)Google Scholar
  159. 159.
    S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, Adv. Funct. Mater. 20, 1166–1172 (2010)Google Scholar
  160. 160.
    Y. Dai, H. Bi, X. Deng, C. Li, F. He, P. Ma, P. Yang, J. Lin, J. Mater. Chem. B 5, 2086–2095 (2017)Google Scholar
  161. 161.
    R. Lv, S. Gai, Y. Dai, N. Niu, F. He, P. Yang, ACS Appl. Mater. Interfaces 5, 10806–10818 (2013)Google Scholar
  162. 162.
    C. Fu, T. Liu, L. Li, H. Liu, D. Chen, F. Tang, Biomaterials 34, 2565–2575 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations