Advertisement

Journal of Porous Materials

, Volume 25, Issue 4, pp 955–963 | Cite as

Oxidative dehydrogenation of propane over three-dimensionally ordered macroporous VMgO catalysts with different vanadium doping

Article
  • 136 Downloads

Abstract

A series of three-dimensionally ordered macroporous (3DOM) VMgO catalysts were prepared by the colloidal crystal templating method. The obtained catalysts were characterized by means of BET, SEM, TEM, FT-IR, XRD and H2-TPR. The results show that the amount of vanadium species can have an impact on the morphology of the 3DOM VMgO catalysts, i.e. particle size and porous structure. The catalyst with 32 wt% V2O5 shows the highest catalytic performance with the yield of propene amounting to 11.3%. Compared with the amorphous conventional VMgO, the 3DOM structured catalysts exhibited higher propene selectivity due to that the efficient diffusion of intermediates and inhibition of consecutive propene oxidation. The FT-IR, XRD and H2-TPR data confirm that isolated VO4 tetrahedral groups are the main promoting factor in the catalysis. Further, the 3DOM VMgO catalysts show high stability in the catalysis.

Keywords

Three-dimensionally ordered macroporous VMgO Propane oxidative dehydrogenation Propene 

Notes

Acknowledgements

The authors acknowledge the financial support from the projects of National Natural Science Foundation of China (21473230, 21603255), the National High Technology Research and Development Program of China (2012AA051002), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA07070702), and the Natural Science Foundation of Shanxi (201601D021052).

References

  1. 1.
    D. Patel, M.A. Chaar, M.C. Kung, H.H. Kung, J. Catal. 105, 483–498 (1987)CrossRefGoogle Scholar
  2. 2.
    M.C. Kung, H.H. Kung, Appl. Catal. A 157, 105–116 (1997)CrossRefGoogle Scholar
  3. 3.
    Q. Liu, J. Li, Z. Zhao, M. Gao, L. Kong, J. Liu, Y. Wei, Catal. Sci. Technol. 6, 5927–5941 (2016)CrossRefGoogle Scholar
  4. 4.
    Z.A. Premji, J.M. Lo, P.D. Clark, J. Phys. Chem. A 118, 1541–1556 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Zhou, Y. Cao, S.-R. Yan, K.-N. Fan, Appl. Catal. A 236, 103–111 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, L. Wang, M. Chen, J. Xu, Y. Cao, H. He, K. Fan, Catal. Lett. 130, 350–354 (2009)CrossRefGoogle Scholar
  7. 7.
    M.J. Holgado, S. San Román, P. Malet, V. Rives, Mater. Chem. Phys. 89, 49–55 (2005)CrossRefGoogle Scholar
  8. 8.
    P.M. Michalakos, M.C. Kung, I. Jahan, H.H. Kung, J. Catal. 140, 226–242 (1993)CrossRefGoogle Scholar
  9. 9.
    D.S.H Sam, V. Soenen, J.C. Volta, J. Catal. 123, 417–435 (1990)CrossRefGoogle Scholar
  10. 10.
    C. Pak, A.T. Bell, T.D. Tilley, J. Catal. 206, 49–59 (2002)CrossRefGoogle Scholar
  11. 11.
    I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, V.I. Zaikovskii, K.J. Klabunde, Catal. Today 144, 278–284 (2009)CrossRefGoogle Scholar
  12. 12.
    A.P.S. Dias, L.D. Dimitrov, M.C.-R. Oliveira, R. Zǎvoianu, A. Fernandes, M.F. Portela, J. Non-Cryst. Solids 356, 1488–1497 (2010)CrossRefGoogle Scholar
  13. 13.
    Z.S. Chao, E. Ruckenstein, Langmuir 20, 7517–7525 (2004)CrossRefGoogle Scholar
  14. 14.
    R. Vidal-Michel, K.L. Hohn, J. Catal. 221, 127–136 (2004)CrossRefGoogle Scholar
  15. 15.
    A.A. Lemonidou, M. Machli, Catal. Today 127, 132–138 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Klisińska, K. Samson, I. Gressel, B. Grzybowska, Appl. Catal. A 309, 10 (2006)CrossRefGoogle Scholar
  17. 17.
    J.D. Pless, B.B. Bardin, R.R. Hammond, H.-S. Kim, P.C. Stair, D. Ko, M.T. Smith, A.K.R. Poeppelmeier, J. Catal. 223, 419–431 (2004)CrossRefGoogle Scholar
  18. 18.
    Z.S. Chao, E. Ruckenstein, J. Catal. 222, 17–31 (2004)CrossRefGoogle Scholar
  19. 19.
    Z.S. Chao, E. Ruckenstein, Catal. Lett. 94, 217–221 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Xie, J. Deng, S. Zang, H. Yang, G. Guo, H. Arandiyan, H. Dai, J. Catal. 322, 38–48 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie, H. Yang, Appl. Catal. B 168–169, 274–282 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Xu, J. Liu, Z. Zhao, C. Xu, J. Zheng, A. Duan, G. Jiang, J. Catal. 282, 1 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, H. Dai, Y. Du, J. Deng, L. Zhang, Z. Zhao, C.T. Au, J. Catal. 287, 149–160 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Wei, Z. Zhao, T. Li, J. Liu, A. Duan, G. Jiang, Appl. Catal. B 146, 57–70 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Lu, B. Cao, F. Yu, J. Liu, Z. Bao, J. Gao, ChemCatChem 6, 473–478 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di, Z. Liu, Appl. Catal. B 91, 11–20 (2009)CrossRefGoogle Scholar
  27. 27.
    B.T. Holland, C.F. Blanford, A. Stein, Science 281, 538–540 (1998)CrossRefGoogle Scholar
  28. 28.
    A. Stein, Microporous Mesoporous Mater. 44–45, 227–239 (2001)CrossRefGoogle Scholar
  29. 29.
    H. Li, L. Zang, H. Dai, H. He, Inorg. Chem. 48, 4421–4434 (2009)CrossRefGoogle Scholar
  30. 30.
    H. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, A. Stein, Chem. Mater. 12, 1134–1141 (2000)CrossRefGoogle Scholar
  31. 31.
    Q. Wu, Q. Yin, J. Liao, J. Deng, Y. Li, Acta Chim. Sin. 63, 891–896 (2005)Google Scholar
  32. 32.
    L. Balderas-Tapia, I. Hernández-Pérez, P. Schacht, I.R. Córdova, G.G. Aguilar-Ríos, Catal. Today 107–108, 371–376 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Environmental EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Coal Conversion, Shanxi Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China

Personalised recommendations