Journal of Porous Materials

, Volume 25, Issue 3, pp 913–921 | Cite as

An efficient carbon catalyst supports with mesoporous graphene-like morphology

  • Dandan Liu
  • Jiaxi Zhang
  • Cheng Zhang
  • Mengyuan Lv
  • Xiaona Zhang
  • Huiyu Song
  • Li Du
  • Min Xue


In this work, we report the synthesis of ordered mesoporous carbon sheets (OMCS) with graphene-like morphology and their applications as the support for electrocatalysts. This lamellar material exhibits uniform mesoporous channels and ease of modification by using different nitrogen sources, such as melamine, urea, and ammonia. Nitrogen-doping on this material leads to a high specific surface area of 761 m2 g−1 and uniform pores with a diameter of 9 nm. Electrochemical tests show that the N-doped OMCS possesses high catalytic activities on the oxygen reduction reaction, which can be attributed to the pyridinic-type and pyrrolic-type nitrogen activating nearby carbon atoms. In addition, we demonstrate that the unique physical structure and surface chemical properties of OMCS improve the dispersion and structure of supported metal Ru nanoparticles, which lead to enhance oxygen evolution reaction activity.


Carbon support Mesoporous carbon sheets Graphene-like N-doped Ru loaded 



This work was supported by the National Natural Science Foundation of China (NSFC Project No. 51302091, 51102099), the Natural Science Foundation of Guangdong Province (2016A030313503), China Scholarship Council (201606155071), and the Fundamental Research Funds for the Central Universities, SCUT.


  1. 1.
    R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103, 7743 (1999)CrossRefGoogle Scholar
  2. 2.
    W. Li, J. Liu, D. Zhao, Nat. Rev. Mater. 1, 16023 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, J.N. Wang, J.J. Niu, J. Mater. Sci. 42, 3692 (2007)CrossRefGoogle Scholar
  4. 4.
    F. Li, J.G. Wang, Y.P. Liu, H.J. Zhou, T.H. Chen, J. Mater. Sci. 44, 6505 (2009)CrossRefGoogle Scholar
  5. 5.
    J.H. Wee, Renew. Sustain. Energy Rev. 11, 1720 (2007)CrossRefGoogle Scholar
  6. 6.
    S.K. Kamarudin, F. Achmad, W.R.W. Daud, Int. J. Hydrog. Energy 34, 6902 (2009)CrossRefGoogle Scholar
  7. 7.
    D. Yu, E. Nagelli, F. Du, L. Dai, J. Phys. Chem. Lett. 1, 2165 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323, 760 (2009)CrossRefGoogle Scholar
  9. 9.
    D.S. Yu, Q. Zhang, L.M. Dai, J. Am. Chem. Soc. 132, 15127 (2010)CrossRefGoogle Scholar
  10. 10.
    L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, ACS Nano 4, 1321 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J.B. Baek, L. Dai, Angew. Chem. Int. Ed. 51, 4209 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Yu, Y. Xue, L. Dai, J. Phys. Chem. Lett. 3, 2863 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Sun, S. Liu, G. Zhou, H.M. Ang, M.O. Tade, S. Wang, ACS Appl. Mater. Interfaces 4, 5466 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Han, J. Wang, Chin. J. Inorg. Chem. 19, 1366 (2003)Google Scholar
  15. 15.
    T. Nakajima, Y. Matsuo, Carbon 32, 469 (1994)CrossRefGoogle Scholar
  16. 16.
    Y. Okamoto, Appl. Surf. Sci. 256, 335 (2009)CrossRefGoogle Scholar
  17. 17.
    J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Carbon 33, 1641 (1995)CrossRefGoogle Scholar
  18. 18.
    P. Matter, L. Zhang, U. Ozkan, J. Catal. 239, 83 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Maldonado, S. Morin, K.J. Stevenson, Carbon 44, 1429 (2006)CrossRefGoogle Scholar
  20. 20.
    G. Liu, X. Li, P. Ganesan, B.N. Popov, Appl. Catal. B 93, 156 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Liu, X. Li, J.W. Lee, B.N. Popov, Catal. Sci. Technol. 1, 207 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Li, G. Liu, B.N. Popov, J. Power Sources 195, 6373 (2010)CrossRefGoogle Scholar
  23. 23.
    W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.J. Wan, S.F. Alvi, L. Li, Angew. Chem. 52, 11755 (2013)CrossRefGoogle Scholar
  24. 24.
    G. Liu, X. Li, P. Ganesan, Electrochim. Acta 55, 2853 (2010)CrossRefGoogle Scholar
  25. 25.
    W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, J. Am. Chem. Soc. 137, 5414 (2015)CrossRefGoogle Scholar
  26. 26.
    M.S. Ahmed, Y.B. Kim, Carbon 111, 577 (2017)CrossRefGoogle Scholar
  27. 27.
    M.S. Ahmed, D.W. Lee, Y.B. Kim, J. Electrochem. Soc. 163, F1169 (2016)CrossRefGoogle Scholar
  28. 28.
    J.C. Laura, K. Franklin, J. Huang, J. Am. Chem. Soc. 131, 1043 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Malitesta, I. Losito, L. Sabbatini, P.G. Zambonin, J. Electron Spectrosc. Relat. Phenom. 76, 629 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Environmental Monitoring CenterGuangzhouChina
  3. 3.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations