Journal of Porous Materials

, Volume 25, Issue 3, pp 761–769 | Cite as

An erbium–organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions

  • Masoumeh Mohammadnejad
  • Taraneh Hajiashrafi
  • Razieh Rashnavadi


The applicability of erbium–metal–organic framework (Er-MOF) in the adsorption and removal of methylene blue from aqueous solution has been studied. Er-MOF was synthesized by hydrothermal method and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray powder diffraction. The high thermal stability, water stability and accessible nano-sized aperture for the Er-MOF could endow it with a very high potential in adsorption of dye pollutant. The adsorption isotherm, kinetic and thermodynamic investigations confirm that the adsorption behavior is based on Langmuir isotherm with an exothermic mechanism and enthalpy-driven process. The speed adsorption process (30 min), low cost, high efficiency, big surface area, selectivity and very high and rapid reusability are the main advantages of the proposed compound as a sorbent.


Erbium–organic framework Selective adsorption Methylene blue Reusability 



We gratefully acknowledge financial support from the Research Council of Alzahra University.


  1. 1.
    L.R. MacGillivray, Metal-Organic Frameworks: Design and Application, 2nd edn. (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  2. 2.
    D. Farrusseng, Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, 3rd edn. (Wiley, Weinheim, 2011)CrossRefGoogle Scholar
  3. 3.
    J.L. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater. 73, 3 (2004)CrossRefGoogle Scholar
  4. 4.
    T.R. Cook, Y.-R. Zheng, P.J. Stang, Chem. Rev. 113, 734 (2012)CrossRefGoogle Scholar
  5. 5.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16, 626 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2011)CrossRefGoogle Scholar
  7. 7.
    D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48, 7502 (2009)CrossRefGoogle Scholar
  8. 8.
    W. Yan, Ch. Zhang, Sh. Chen, L. Han, H. Zheng, ACS Appl. Mater. Interfaces 9, 1629 (2017)CrossRefGoogle Scholar
  9. 9.
    A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Toxicol. Environ. Chem. 94, 1846 (2012)CrossRefGoogle Scholar
  10. 10.
    N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 244, 444 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)CrossRefGoogle Scholar
  12. 12.
    S. Senthilkumaar, P. Varadarajan, K. Porkodi, C. Subbhuraam, J. Colloid Interface Sci. 284, 78 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Wang, Z. Zhu, A. Coomes, F. Haghseresht, G. Lu, J. Colloid Interface Sci. 284, 440 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Senthilkumaar, K. Porkodi, R. Vidyalakshmi, J. Photochem. Photobiol. A 170, 225 (2005)CrossRefGoogle Scholar
  15. 15.
    T.K. Sen, S. Afroze, H.M. Ang, Water Air Soil Pollut. 218, 499 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Desalination 252, 149 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Mondal, J. Pal, K.K. Pal, A.K. Sasmal, M. Ganguly, A. Roy, P. Manna, T. Pal, Crys. Growth Des. 14, 5034 (2014)CrossRefGoogle Scholar
  18. 18.
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Elosua, I.R. Matias, C. Bariain, F.J. Arregui, Sensors 6, 1440 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Cui, B. Chen, G. Qian, Coord. Chem. Rev. 273, 76 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Chem. Commun. 49, 1276 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Lian, B. Yan, RSC Adv. 6, 11570 (2016)CrossRefGoogle Scholar
  23. 23.
    H.-L. Jiang, N. Tsumori, Q. Xu, Inorg. Chem. 49, 10001 (2010)CrossRefGoogle Scholar
  24. 24.
    X. He, K.B. Male, P.N. Nesterenko, D. Brabazon, B. Paull, J.H. Luong, ACS Appl. Mater. Interfaces 5, 8796 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31, 145 (2001)CrossRefGoogle Scholar
  26. 26.
    T. Hajiashrafi, M. Karimi, A. Heydari, A.A. Tehrani, Catal. Lett. 147, 453 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang, J. Hazard. Mater. 185, 1045 (2011)CrossRefGoogle Scholar
  28. 28.
    X.-P. Luo, S.-Y. Fu, Y.-M. Du, J.-Z. Guo, B. Li, Microporous Mesoporous Mater. 237, 268 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Lin, Z. Song, G. Che, A. Ren, P. Li, C. Liu, J. Zhang, Microporous Mesoporous Mater. 193, 27 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Shi, L. Hu, J. Zheng, M. Zhang, J. Xu, J. Dispersion Sci. Technol. 37, 1226 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Chem. Eng. J. 197, 34 (2012)CrossRefGoogle Scholar
  32. 32.
    Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Appl. Surf. Sci. 327, 77 (2015)CrossRefGoogle Scholar
  33. 33.
    E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185, 507 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Shen, J. Luo, S. Zhang, X. Luo, J. Environ. Chem. Eng. 3, 1372 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurin, C. Zhong, J. Mater. Chem. A 1, 8534 (2013)CrossRefGoogle Scholar
  36. 36.
    Ch. Li, Zh. Xiong, J. Zhang, Ch. Wu, J. Chem. Eng. Data 60(11), 3414 (2015)CrossRefGoogle Scholar
  37. 37.
    K. Li, X. Wang, Bioresour. Technol. 100, 2810 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Kara, H. Yuzer, E. Sabah, M. Celik, Water Res. 37, 224 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra University, VanakTehranIran

Personalised recommendations