Journal of Porous Materials

, Volume 25, Issue 3, pp 677–685 | Cite as

Constructing photocatalyst from β-Bi2O3 photonic crystals for enhanced photocatalytic performance

  • Xiaofang Li
  • Zhangsen Chen
  • Huanhuan Quan
  • Yu Shao
  • Danzhen Li


Photonic crystals with highly ordered structure have presented a prospective application in the design of photocatalysts. Herein, we fabricated visible-light active β-Bi2O3 photonic crystals via a modified sandwich infiltration method. By using the acetylacetone-complexed metal ion precursors, pure β-Bi2O3 photonic crystals with highly ordered structure could be obtained at a calcination temperature of 400 °C. Benefited from the facilitated mass transport in the highly ordered structure, β-Bi2O3 photonic crystals exhibited higher photocatalytic activity towards organic pollutions degradation than porous β-Bi2O3 and β-Bi2O3 nanocrystals. Furthermore, the photonic band gap of β-Bi2O3 photonic crystals could be modulated to overlap its electronic band gap by changing the macropore diameter into 220 nm. Slow photon effect could be observed over the β-Bi2O3 photonic crystals with a pore diameter of 220 nm, which enhanced the electronic band gap absorption and further improved the corresponding photocatalytic activity. The enhanced activity stability of β-Bi2O3 photonic crystals could also be observed. Based on the detection of active species, the degradation mechanism over β-Bi2O3 photonic crystals was discussed. The fabrication of β-Bi2O3 photonic crystals in this study provides experimental guidance for developing photonic crystals with enhanced visible light absorption and photocatalytic activities.


β-Bi2O3 Photocatalysis Photonic crystal Visible light Degradation Slow photon 



This work was financially supported by the National Natural Science Foundation of China (21173047 and 21373049).

Supplementary material

10934_2017_480_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2190 KB)


  1. 1.
    G. Collins, M. Blömker, M. Osiak, J.D. Holmes, M. Bredol, C. O’Dwyer, Chem. Mater. 25, 4312 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Curti, J. Schneider, D.W. Bahnemann, C.B. Mendive, J. Phys. Chem. Lett. 6, 3903 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Tao, W. Zhu, Q. An, H. Yang, W. Li, C. Lin, F. Yang, G. Li, J. Phys. Chem. C 115, 20053 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, ACS Nano 5, 590 (2010)CrossRefGoogle Scholar
  5. 5.
    J.K. Kim, J.H. Moon, T.W. Lee, J.H. Park, Chem. Commun. 48, 11939 (2012)CrossRefGoogle Scholar
  6. 6.
    J.I.L. Chen, G.A. Ozin, J. Mater. Chem. 19, 2675 (2009)CrossRefGoogle Scholar
  7. 7.
    J.I.L. Chen, G. von Freymann, S.Y. Choi, V. Kitaev, G.A. Ozin, Adv. Mater. 18, 1915 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, J. Am. Chem. Soc. 125, 6306 (2003)CrossRefGoogle Scholar
  9. 9.
    X. Li, X. Zhen, S. Meng, J. Xian, Y. Shao, X. Fu, D. Li, Environ. Sci. Technol. 47, 9911 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Li, X. Zhang, X. Zheng, Y. Shao, M. He, P. Wang, X. Fu, J. Mater. Chem. A 2, 15796 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Zheng, S. Meng, J. Chen, J. Wang, J. Xian, Y. Shao, X. Fu, D. Li, J. Phys. Chem. C 117, 21263 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, X. Fu, J. Mater. Chem. A 1, 2744 (2013)CrossRefGoogle Scholar
  13. 13.
    Q. Huang, S. Zhang, C. Cai, B. Zhou, Mater. Lett. 65, 988 (2011)CrossRefGoogle Scholar
  14. 14.
    G. Zhu, W. Que, J. Zhang, J. Alloys Compd. 509, 9479 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Chem. Mater. 22, 3079 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Sun, Z. Zhang, A. Xie, C. Xiao, S. Li, F. Huang, Y. Shen, Nanoscale 7, 13974 (2015)CrossRefGoogle Scholar
  17. 17.
    B.T. Holland, C.F. Blanford, Chem. Mater. 11, 795 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Zhou, H.B. Wu, J. Bao, L. Liang, X.W. Lou, Y. Xie, Angew. Chem. Int. Ed. 52, 8579 (2013)CrossRefGoogle Scholar
  19. 19.
    R.C. Schroden, M. Al-Daous, A. Stein, Chem. Mater. 13, 2945 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Liu, J. Jin, Y. Li, H. Huang, C. Wang, M. Wu, L. Chen, B. Su, J. Mater. Chem. A 2, 5051 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Hu, D. Li, F. Sun, Y. Weng, S. You, Y. Shao, J. Hazard. Mater. 301, 362 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, Y. Wen, H. Ding, Y. Shan, J. Mater. Sci. 45, 1385 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, S. Meng, X. Fu, Environ. Sci. Technol. 43, 4164 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Fujishima, T.N. Rao, D.A. Tryk, Photochem. Rev. 1, 1 (2000)CrossRefGoogle Scholar
  25. 25.
    X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan, L. Wang, Appl. Catal. B 140–141, 433 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 209–210, 137 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xiaofang Li
    • 1
  • Zhangsen Chen
    • 1
  • Huanhuan Quan
    • 1
  • Yu Shao
    • 1
  • Danzhen Li
    • 1
  1. 1.State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of PhotocatalysisFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations