Journal of Porous Materials

, Volume 25, Issue 3, pp 657–664 | Cite as

Magnetic carbon aerogel pyrolysis from sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel for removal of organic contamination

Article
  • 590 Downloads

Abstract

In this paper, we present a facile approach for the synthesis of polysaccharide-based carbon aerogel by sol–gel processing, freeze-drying, and pyrolysis of a sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel. The as-prepared carbon aerogel was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, nitrogen adsorption measurements, and vibrating sample magnetometry. The carbon aerogel obtained in this study possessed low density (0.064 ± 0.0029 g/cm3), a high surface area (185 m2/g), and flame retardance. Measurements of the magnetic properties indicated that the carbon aerogel exhibited typical ferromagnetic characteristic at room temperature. The absorption capacity of the carbon aerogel for oils and organic solvents is as much as 10–20 times its own weight. Moreover, a method of combustion could be employed to recycle the carbon aerogel. The results imply that the carbon aerogel is a potential cost-effective adsorbent for oil and organic pollutants from aqueous solutions in environmental pollution cleanup.

Keywords

Carboxymethyl cellulose Sodium montmorillonite Carbon aerogel Magnetic properties Absorption capacity 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities (E2572017EB05) and Heilongjiang Province outstanding youth science fund (JC201301).

References

  1. 1.
    R. Singh, R.K. Khardekar, D.K. Kohli, M.K. Singh, H. Srivastava, P.K. Gupta, Mater. Lett. 64, 843–845 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Wang, Y. Gong, Y. Wang, RSC Adv. 4, 45753–45759 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Wang, M. Chen, C. Wang, J. Wang, J. Zheng, Mater. Lett. 68, 446–449 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Yu, J. Li, L. Wang, J. Porous. Mat. 23, 997–1003 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Han, Q. Sun, H. Zheng, J. Li, C. Jin, Carbohydr. Polym. 136, 95–100 (2016)CrossRefGoogle Scholar
  6. 6.
    A.M. Elkhatat, S.A. Al-Muhtaseb, Adv. Mater. 23, 2887–2903 (2011)CrossRefGoogle Scholar
  7. 7.
    M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535–539 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Mullen, Adv. Mater. 24, 5130–5135 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554–2560 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Kong, J. Tang, Z. Wu, J. Wei, H. Wu, Y. Wang, G. Zheng, D. Zhao, Angew. Chem. Int. Edit 53, 2888–2892 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.Y. Wu, C. Li, H.W. Liang, J.F. Chen, S.H. Yu, Angew. Chem. Int. Ed. 52, 2925–2929 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, A.C.S. Sustain, Chem. Eng. 2, 1492–1497 (2014)Google Scholar
  13. 13.
    X. Wu, W. Jia, Chem. Eng. J. 245, 210–216 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Chang, D. Chen, X. Jiao, Polymer 51, 3801–3807 (2010)CrossRefGoogle Scholar
  15. 15.
    H.B. Chen, B.S. Chiou, Y.Z. Wang, D.A. Schiraldi, ACS Appl. Mater. Inter. 5, 1715–1721 (2013)CrossRefGoogle Scholar
  16. 16.
    T. Pojanavaraphan, R. Magaraphan, B.S. Chiou, Biomacromolecules 11, 2640–2646 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Wang, D.A. Schiraldi, M. Sánchez-Soto, Ind. Eng. Chem. Res. 53, 7680–7687 (2014)CrossRefGoogle Scholar
  18. 18.
    N.H. Kim, S.V. Malhotra, M. Xanthos, Microporous Mesoporous Mater. 96, 29–35 (2006)CrossRefGoogle Scholar
  19. 19.
    O. Monticelli, Z. Musina, A. Frache, F. Bellucci, G. Camino, S. Russo, Polym. Degrad. Stab. 92, 370–378 (2007)CrossRefGoogle Scholar
  20. 20.
    X. Chen, H. Gao, H.J. Ploehn, Carbohydr. Polym. 101, 565–573 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Lin, A. Li, L. Lu, Y. Cao, Carbohydr. Polym. 118, 126–132 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Xu, X. Ren, M.A. Hanna, J. Appl. Polym. Sci. 99, 1684–1691 (2006)CrossRefGoogle Scholar
  23. 23.
    J.F. Du, Y. Bai, W.Y. Chu, L.J. Qiao, J. Polym. Sci. Pol. Phys. 48, 260–266 (2010)CrossRefGoogle Scholar
  24. 24.
    W. Wang, Y. Sun, B. Liu, S. Wang, M. Cao, Carbon 91, 56–65 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Wu, W. Li, J. Tan, X. Nan, S. Liu, Appl. Surf. Sci. 332, 354–361 (2015)CrossRefGoogle Scholar
  26. 26.
    Song X, Yang S, He L, RSC Adv. 4, 49000–49005 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Liu, C. Lv, X. Tan, J. Phys. Chem. Solids 74, 1275–1280 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Li, M. Luo, C.J. Zhao, C.Y. Li, W. Wang, Y.G. Zu, Y.J. Fu, Bioresource. Technol. 128, 673–678 (2013)CrossRefGoogle Scholar
  29. 29.
    D. Wang, T. Silbaugh, R. Pfeffer, Y.S. Lin, Powder. Technol. 203, 298–309 (2010)CrossRefGoogle Scholar
  30. 30.
    S.S. Banerjee, M.V. Joshi, R.V. Jayaram, Chemosphere 64, 1026–1031 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Miao Yu
    • 1
    • 2
  • Yingying Han
    • 1
    • 2
  • Jian Li
    • 1
    • 2
  • Lijuan Wang
    • 1
    • 2
  1. 1.College of Material Science and EngineeringNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Research Center of Wood Intelligent ScienceNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations