Journal of Porous Materials

, Volume 25, Issue 2, pp 603–609 | Cite as

Effect of hydro-thermal carbonisation on the structural properties of bulk-type wood (Chamaecyparis obtusa) upon high-temperature heat treatment

  • Seyoung Kim
  • Hyun-uk Kim
  • Young-hoon Seong
  • Insub Han
  • Sangkuk Woo
  • Soo-hyun Kim


Hydro-thermal carbonisation (HTC) is a method to convert biomorphic materials such as wood to carbon, with the advantage of enhancing their specific surface area to an extent greater than that by pyrolysis. In this study, wood samples underwent HTC at 250 °C, followed by a heat treatment at 600, 800 or 1000 °C. The cell walls of the HTC processed samples showed a structure made of alternating porous and dense carbon layers that changed as a function of the additional heat-treatment temperature. The specific surface area of the samples which underwent only a pyrolysis carbonisation drastically decreased at 80 °C, while that of the HTC samples was 473 m2/g, which enabled them to maintain a high-temperature stability. Compressive strength tests demonstrated plastic deformation and a different fracture mode for the HTC samples compared to the samples subjected to pyrolysis carbonisation only. Different values of mechanical strength in longitudinal and vertical directions were analysed.


Carbonisation Pyrolysis Mechanical properties Heat treatment 



This work was conducted under the framework of the research and development program of the Korea Institute of Energy Research (B6-2490).


  1. 1.
    C.E. Byrne, D.C. Nagle, Carbon 35, 259–266 (1997)CrossRefGoogle Scholar
  2. 2.
    E. Auer, A. Freund, J. Pietsch, T. Tacke, Appl. Catal. A 173, 259–271 (1998)CrossRefGoogle Scholar
  3. 3.
    J.M. Gatica, A.L. García-Cabeza, M.P. Yeste, R. Marín-Barrios, J.M. González-Leal, G. Blanco, G.A. Cifredo, F.M. Guerra, H. Vidal, Chem. Eng. J. 29, 174–184 (2016)CrossRefGoogle Scholar
  4. 4.
    T.X. Fan, T. Hirose, T. Okabe, D. Zhang, J. Porous Mater. 8, 3 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey, J. Mohamed, P.H. Steele, M.F. Alexandre-Franco, V. Gomez-Serrano, H. Gong, J. Colloid Interface Sci. 310, 57–73 (2007)CrossRefGoogle Scholar
  6. 6.
    Y. Yao, B. Gao, H. Chen, L. Jiang, M. Inyang, A.R. Zimmerman, X. Cao, L. Yang, Y. Xue, H. Li, J. Hazard. Mater. 209–210, 408–413 (2012)Google Scholar
  7. 7.
    D.C. Cruz, Thesis, University of Western Ontario, December 2012Google Scholar
  8. 8.
    A. Jain, R. Balasubramanian, M.P. Srinivasan, Chem. Eng. J. 283, 789–805 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Sevilla, A.B. Fuertes, Chem. Eur. J. 15, 4195–4203 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Sevilla, A.B. Fuertes, Carbon 47, 2281–2289 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Sevilla, A. Fuertes, R. Mokaya, Energy Environ. Sci. 4, 1400–1410 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Romero-Anaya, M. Ouzzine, M. Lillo-Ródenas, A. Linares-Solano, Carbon 68, 296–307 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Wang, Y. Guo, B. Zou, C. Rong, X. Ma, Y. Qu, Y. Li, Z. Wang, Bioresour. Technol. 102, 1947–1950 (2011)CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, Y. Qu, Y. Guo, Z. Wang, X. Wang, Colloids Surf. A 447, 183–187 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Falco, J.M. Sieben, N. Brun, M. Sevilla, T. van der Mauelen, E. Morallón, D. Cazorla-Amorós, M.M. Titirici, Chem. Sus. Chem. 6, 374–382 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Pham-Huu, C. Bouchy, T. Dintzer, G. Ehret, C. Estournes, M.J. Ledoux, Appl. Catal. A 180, 385–397 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Jain, V. Ong, S. Jayaraman, R. Balasubramanian, M. Srinivasan, J. Supercrit. Fluid 107, 513–518 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6, 1249–1259 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  20. 20.
    H.L. Wang, Z. Li, J.K. Tak, C.M.B. Holt, X.H. Tan, Z.W. Xu, B.S. Amirkhiz, D. Hayfield, A. Anyia, T. Stephenson, D. Mitlin, Carbon 57, 317–328 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Aravindan, J. Sundaramurthy, A. Jain, P.S. Kumar, W.C. Ling, S. Ramakrishna, M.P. Srinivasan, S. Madhavi, Chem. Sus. Chem. 7, 1858–1863 (2014)CrossRefGoogle Scholar
  22. 22.
    A.C. Lua, J. Guo, Langmuir 17, 7112–7117 (2001)Google Scholar
  23. 23.
    H. Hofbauer, M. Kaltschmitt, T. Nussbaumer, Energie aus Biomasse (Springer, Berlin, 2009), pp. 375–406Google Scholar
  24. 24.
    O. Bobleter, Prog. Polym. Sci. 19, 797–841 (1994)CrossRefGoogle Scholar
  25. 25.
    W.S.L. Mok, M.J. Antal, P. Szabo, G. Varhegyi, B. Zelei, Ind. Eng. Chem. Res. 31, 1162–1166 (1992)CrossRefGoogle Scholar
  26. 26.
    J.M. Kim, I. S. Song, D. Cho, I. Hong, Carbon Lett. 12, 131–137 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Lu, G.Q. Lu, Z.M. Xiao, J. Porous Mater. 6, 4 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Seyoung Kim
    • 1
  • Hyun-uk Kim
    • 1
  • Young-hoon Seong
    • 1
  • Insub Han
    • 1
  • Sangkuk Woo
    • 1
  • Soo-hyun Kim
    • 1
  1. 1.Energy Materials LaboratoryKorea Institute of Energy Research (KIER)DaejeonSouth Korea

Personalised recommendations